Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2021 | Vol. 69, no. 1 | 231--241
Tytuł artykułu

A simplifed approach for the evaluation of groundwater fow in stream–aquifer interaction

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Stream–aquifer interaction process plays an important role in modulating food wave propagation in a channel. The most elementary understanding of stream–aquifer interaction can be interpreted by the fux direction between a surface water body and the underlying aquifer. At the time of foods, stream stage rises, and the water gets infltrated into the aquifer, and this process gets reversed at the time when the stream stage gets declined. Therefore, an integrated mechanism between the surface and subsurface fows is particularly important for models, where the response of the system is based on simultaneous interactions between these two major fow domains. In this study, numerical simulation of a food wave has been demon strated considering stream–aquifer interaction. The calibration has been executed on a hypothetical food event accessed by routing a known stage hydrograph for a channel reach having a rectangular cross section which fully penetrates the adjoining aquifer given by Zitta and Wiggert (Water Resour Res 7:1341–1345, 1971). A simplifed mathematical approach, based on Darcy’s law, has been presented here for the solution of groundwater fow equations. The results obtained from the adopted procedure are also compared with the solution proposed by Zitta and Wiggert in 1971. The NSE and RMSE (m3 /s) estimate assessed for the simulated hydrographs using the proposed methodology with respect to the procedure adopted by Zitta and Wiggert (Water Resour Res 7:1341–1345, 1971) is 0.9983 and 0.8544, respectively. Therefore, the use of Simpson’s (3/8)- rule is not suggestible due to its complicated calculation and its sensitivity, and it is better to use the proposed simplifed approach for the evaluation of lateral fow.
Wydawca

Czasopismo
Rocznik
Strony
231--241
Opis fizyczny
Bibliogr. 33 poz.
Twórcy
Bibliografia
  • 1. Aravin VI, Numerov SN (1965) Theory of Fluid Flow in Undeformable Porous Media, pp. 292–296
  • 2. Bear J (1972) Dynamics of fluids in porous media. Dover Publications Inc., New York, p 365
  • 3. Bencala KE (1993) A perspective on stream-catchment connections. J North Am Benthol Soc 12(1):44–47
  • 4. Castro NM, Hornberger GM (1991) Surface-subsurface water interactions in an alluviated mountain stream channel. Water Resour Res 27(7):1613–1621
  • 5. Chen X, Chen X (2003) Stream water infiltration, bank storage, and storage zone changes due to stream-stage fluctuations. J Hydrol 280(1–4):246–264
  • 6. Choudhary M, Chahar BR (2007) Recharge/seepage from an array of rectangular channels. J Hydrol 343(1–2):71–79
  • 7. Cooper HH, Rorabaugh MI (1963) Groundwater movements and bank storage due to flood stages in surface streams. US Geol Surv Water Supply Pap 1536:343–366
  • 8. Ferris JG (1951) Cyclic fluctuations of water level as a basis for determining aquifer transmissibility. vol 2, publ 33. International Assoc Sci Hydrology, General Assembly of Brussels
  • 9. Gill MA (1978) Flood routing by the Muskingum method. J Hydrol 36(3–4):353–363
  • 10. Hall FR, Moench AF (1972) Application of the convolution equation to stream–aquifer relationships. Water Resour Res 8(2):487–493
  • 11. Hantush MM, Govindaraju RS, Mariño MA, Zhang Z (2002) Screening model for volatile pollutants in dual porosity soils. J Hydrol 260(1–4):58–74
  • 12. Hogarth WL, Parlange JY, Parlange MB, Lockington D (1999) Approximate analytical solution of the Boussinesq equation with numerical validation. Water Resour Res 35(10):3193–3197
  • 13. Hornberger GM, Ebert J, Remson I (1970) Numerical solution of the Boussinesq equation for aquifer-stream interaction. Water Resour Res 6(2):601–608
  • 14. Jacobs CE, Hunter R (1950) Flow of groundwater in engineering hydraulics. John Wiley, New York, pp 321–386
  • 15. Kalbus E, Schmidt C, Molson JW, Reinstorf F, Schirmer M (2009) Influence of aquifer and streambed heterogeneity on the distribution of groundwater discharge. Hydrol Earth Syst Sci 13(1):69–77
  • 16. Kim JH, Geem ZW, Kim ES (2001) Parameter estimation of the nonlinear muskingum model using harmony search 1. JAWRA J Am Water Resour Assoc 37(5):1131–1138
  • 17. Kim SH, Ahn KH, Ray C (2008) Distribution of discharge intensity along small-diameter collector well laterals in a model riverbed filtration. J Irrig Drain Eng 134(4):493–500
  • 18. Kochina P (1962) Theory of ground water movement. (trans: Roger De Wiest JM). Princeton University Press, Princeton, pp 497–517, 572–588
  • 19. Matthews John H (2004) Simpson's 3/8 Rule for Numerical Integration. Numerical Analysis - Numerical Methods Project. California State University, Fullerton
  • 20. Madlala TE (2015) Determination of groundwater-surface water interaction, upper Berg River catchment, South Africa. MSc thesis. Department of Earth sciences. University of the Western Cape
  • 21. Majumdar PK, Sridharan K, Mishra GC, Sekhar M (2013) Unsteady equation for free recharge in a confined aquifer. J Geol Min Res 5(5):114–123
  • 22. Miracapillo C, Morel-Seytoux HJ (2014) Analytical solutions for stream-aquifer flow exchange under varying head asymmetry and river penetration: comparison to numerical solutions and use in regional groundwater models. Water Resour Res 50:7430–7444
  • 23. Perkins SP, Koussis AD (1996) Stream–aquifer interaction model with diffusive wave routing. J Hydraul Eng 122(4):210–218
  • 24. Pinder GF, Sauer SP (1971) Numerical simulation of flood wave modification due to bank storage effects. Water Resour Res 7(1):63–70
  • 25. Safavi HR, Afshar A, Ghaheri A, Marino MA (2004) A coupled surface water and groundwater flow model. Iran J Sci Technol B104:38–48
  • 26. Sophocleous M (2002) Interactions between groundwater and surface water: the state of the science. Hydrogeol J 10(1):52–67
  • 27. Spanoudaki K, Nanou A, Stamou AI, Christodoulou G, Sparks T, Bockelmann B, Falconer RA (2005) Integrated surface water-groundwater modelling. Glob Nest J 7(3):281–295
  • 28. Swamee PK, Mishra GC, Chahar BR (2000) Solution for a stream depletion problem. J Irrig Drain Eng 126(2):125–126
  • 29. Todd DK (1956) Groundwater flow in relation to a flooding stream. Proc Am Soc Civil Eng ASCE 81(2):1–20
  • 30. Tung YK (1985) River flood routing by nonlinear Muskingum method. J Hydraul Eng 111(12):1447–1460
  • 31. Verma RD, Brutsaert W (1970) Unconfined aquifer seepage by capillary flow theory. J Hydraul Div 96(6):1331–1344
  • 32. Yoon J, Padmanabhan G (1993) Parameter estimation of linear and nonlinear Muskingum models. J Water Resour Plan Manag 119(5):600–610
  • 33. Zitta VL, Wiggert JM (1971) Flood routing in channels with bank seepage. Water Resour Res 7(5):1341–1345
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-067817ee-eb74-4927-91fe-ff373df349a6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.