Czasopismo
2018
|
Vol. 51, nr 1
|
141--150
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
For 2π-periodic functions from Lp (where 1 < p < ∞) we prove an estimate of approximation by Euler means in Lp metric generalizing a result of L. Rempuska and K. Tomczak. Furthermore, we show that this estimate is sharp in a certain sense. We study the uniform approximation of functions by Euler means in terms of their best approximations in p-variational metric and also prove the sharpness of this estimate under some conditions. Similar problems are treated for conjugate functions.
Czasopismo
Rocznik
Tom
Strony
141--150
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
- Saratov State University, Faculty of Mechanics and Mathematics, 410012, Saratov, Astrakhanskaya St., 83, Russian Federation, VolosivetsSS@mail.ru
autor
- Saratov State University, Faculty of Mechanics and Mathematics, 410012, Saratov, Astrakhanskaya St., 83, Russian Federation, anantuleneva@mail.ru
Bibliografia
- [1] Volosivets S. S., Convergence of series of Fourier coeflcients of p-absolutely continuous functions, Anal. Math., 2000, 26, 63–80
- [2] Wiener N., The quadratic variation of a function and its Fourier coeflcients, J. Math. and Phys., 924, 3, 72–94
- [3] Young L. C., An inequality of Hölder type connected with Stieltjes integration, Acta Math., 1936, 67, 251–282
- [4] Love E. R., A generalization of absolute continuity, J. London Math. Soc., 1951, 26, 1–13
- [5] Bary N. K., Treatise on trigonometric series Vol 1+2, Pergamon Press, New York, 1964
- [6] Timan A. F., Theory of approximation of functions of a real variable, Macmillan, New York, 1963
- [7] Terekhin A. P., Approximation of functions of bounded p-variation, Izv. Vyssh. Uchebn. Zaved. Mat. [Soviet Math. (Iz. VUZ)], 1965, 2, 171–187 (in Russian)
- [8] Volosivets S. S., Refined theorems of approximation theory in the space of p-absolutely continuous functions, Math. Notes, 2006, 80, 663–672
- [9] Bary N. K., Stechkin S. B., Best approximations and differential properties of two conjugate functions, Trudy Moskov. Mat. Obshch., 1956, 5, 483–522 (in Russian)
- [10] Hardy G. H., Divergent series, Oxford Univ. Press, Oxford, 1949
- [11] Chui C. K., Holland A. S. B., On the order of approximation by Euler and Borel means, J. Approxim. Theory, 1983, 39, 24–38
- [12] Tyuleneva A. A., Approximation of bounded p-variation functions by Euler means, Izvestiya Sarat. Gosud. Univ. Ser. Matem. Mech. Inform., 2015, 15, 300–309 (in Russian, English summary)
- [13] Rempulska L., Tomczak K., On Euler and Borel means of Fourier series in Hölder spases, Proc. of A. Razmadze Math. Institute, 2006, 140, 141–153
- [14] Terekhin A. P., The Lebesgue constant for the space of functions of bounded p-variation, Math. Notes, 1967, 2, 798–802
- [15] Bary N. K., On best approximation of two conjugate functions by trigonometric polynomials, Izv. Akad. Nauk SSSR Ser. Mat., 1955, 19, 285–302 (in Russian)
- [16] Golubov B. I., On the best approximation of p-absolutely continuous functions, In: Several Questions of Function Theory and Functional Analysis. Vol. 4., Tbilisi university, Tbilisi, 1988, 85–99 (in Russian)
- [17] Volosivets S. S., Tyuleneva A. A., Generalized monotonicity of sequences and functions of bounded p-variation, Acta Sci. Math. (Szeged), 2016, 82, 111–124
- [18] Zygmund A., Trigonometric series. Vol.1., Cambridge Univ. Press, Cambridge, 1959
- [19] Konyushkov A. A., Best approximations by trigonometric polynomials and Fourier coeflcients, Mat. Sb. 1958, 44(86), 53–84 (in Russian)
- [20] Tikhonov S., Trigonometric series with general monotone coeflcients, J. Math. Anal. Appl., 2007, 326, 721–735
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-064d889c-5cf8-4792-aab4-d069b664f12f