Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2022 | Vol. 70, no 5 | 2325--2339
Tytuł artykułu

Experimental study of debris-induced scour around a slotted bridge pier

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One of the most common problems for river engineers is the accumulation of waterborne debris upstream of the bridge piers. In addition to reducing the cross-sectional flow area, debris increases the drag force exerted to the pier and contributes to scour. Several studies have been carried out by previous researchers to examine the usefulness of different types of countermeasures. The effectiveness of these countermeasures is not well understood when debris accumulation occurs. In this study, the effect of debris accumulation on the efficiency of a bridge pier slot, as scour countermeasure, is investigated experimentally. A total of 54 experiments were carried out under different hydraulic and debris geometrical conditions. The results showed that slots were effective in protecting bridge piers against scouring in presence of debris. Depending on the debris shape, the reduction efficiency may increase or decrease for a slotted pier in presence of debris accumulation when compared to the standard pier conditions without debris accumulation. Except for the inverse pyramid shape, the maximum scour is generally more reduced due to sheltering effect when the debris is located on the bed. While debris accumulation can lead to a reduction of the slot efficiency, the slot can be considered a reliable countermeasure against scouring. The outcome of this study can help the design of new bridges affected by large wood debris accumulations.
Wydawca

Czasopismo
Rocznik
Strony
2325--2339
Opis fizyczny
Bibliogr. 90 poz.
Twórcy
  • Water Engineering Department, Shiraz University, Shiraz, Iran
  • School of Civil Engineering and Built Environment, Liverpool John Moores University, Peter Jost Centre, Byrom Street, Liverpool L3 3AF, UK
Bibliografia
  • 1. Akib S, Liana Mamat N, Basser H, Jahangirzadeh A (2014) Reducing local scouring at bridge piles using collars and geobags. Sci World J 2014:1–7. https://doi.org/10.1155/2014/128635
  • 2. Azevedo M, Leite F, Lima M (2014) Experimental study of scour around circular and elongated bridge piers with and without pier slot. In: Avilez-Valente P, Carvalho E, Silva Lopes A (eds) MEFTE 2014. Porto, Portugal, pp 195–200
  • 3. Beechie TJ, Sibley TH (1997) Relationships between channel characteristics, woody debris, and fish habitat in Northwestern Washington Streams. Trans Am Fish Soc 126:217–229. https://doi.org/10.1577/1548-8659(1997)126%3c0217:rbccwd%3e2.3.co;2
  • 4. Benn J (2013) Railway bridge failure during flooding in the UK and Ireland. Proc Inst Civil Eng - Forensic Eng 166(4):163–170. https://doi.org/10.1680/feng.2013.166.4.163
  • 5. Bestawy A, Eltahawy T, Alsaluli A et al (2020) Reduction of local scour around a bridge pier by using different shapes of pier slots and collars. Water Sci Technol Water Supply 20:1006–1015. https://doi.org/10.2166/ws.2020.022
  • 6. Briaud JL, Chen HC, Chang KA et al (2006) Scour at bridges due to debris accumalation: a review. 3rd International conference on scour and erosion (ICSE-3). The Netherlands, Amsterdam, pp 113–120
  • 7. Cantero-Chinchilla FN, de Almeida GAM, Manes C (2021) Temporal evolution of clear-water local scour at bridge piers with flow-dependent debris accumulations. J Hydraul Eng 147:06021013. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001920
  • 8. Cantero-Chinchilla FN, de Almeida GAM, Escarameia M (2018) Assessing the effects of debris accumulations at river bridges. Southampton, UK
  • 9. Carnacina I, Pagliara S, Leonardi N (2019) Bridge pier scour under pressure flow conditions. River Res Appl 35:844–854. https://doi.org/10.1002/rra.3451
  • 10. Chiew YM (1992) Scour protection at bridge piers. J Hydraul Eng 118:1260–1269. https://doi.org/10.1061/(ASCE)0733-9429(1992)118:9(1260)
  • 11. Chiew YM (1995) Mechanics of riprap failure at bridge piers. J Hydraul Eng 121:635–643. https://doi.org/10.1061/(ASCE)0733-9429(1995)121:9(635)
  • 12. Chiew YM (2004) Local scour and riprap stability at bridge piers in a degrading channel. J Hydraul Eng 130:218–226. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:3(218)
  • 13. Chiew YM, Lim F-H (2000) Failure behavior of riprap layer at bridge piers under live-bed conditions. J Hydraul Eng 126:43–55. https://doi.org/10.1061/(ASCE)0733-9429(2000)126:1(43)
  • 14. Chiew YM, Lim S (2003) Protection of bridge piers using a sacrificial sill. Proc Inst Civ Eng - Water Marit Eng 156:53–62. https://doi.org/10.1680/wame.2003.156.1.53
  • 15. Chiew YM, Melville BW (1987) Local scour around bridge piers. J Hydraul Res 25:15–26. https://doi.org/10.1080/00221688709499285
  • 16. Comiti F, Andreoli A, Lenzi MA, Mao L (2006) Spatial density and characteristics of woody debris in five mountain rivers of the Dolomites (Italian Alps). Geomorphology 78:44–63. https://doi.org/10.1016/j.geomorph.2006.01.021
  • 17. De Cicco PN, Paris E, Solari L, Ruiz-Villanueva V (2020) Bridge pier shape influence on wood accumulation: Outcomes from flume experiments and numerical modelling. J Flood Risk Manag 13:e12599. https://doi.org/10.1111/jfr3.12599
  • 18. Dey S, Sumer BM, Fredsøe J (2006) Control of scour at vertical circular piles under waves and current. J Hydraul Eng 132:270–279. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:3(270)
  • 19. Dias AJ, Fael CS, Núñez-González F (2019) Effect of debris on the local scour at bridge piers. IOP Conf Series: Mater Sci Eng 471:022024. https://doi.org/10.1088/1757-899X/471/2/022024
  • 20. Diehl TH (1997) Potential drift accumulation at bridges. US Department of Transportation, Federal Highway Administration Research and Development, McLean, Virginia, USA.
  • 21. Dixon SJ, Sear DA (2014) The influence of geomorphology on large wood dynamics in a low gradient headwater stream. Water Resour Res 50:9194–9210. https://doi.org/10.1002/2014WR015947
  • 22. Ebrahimi M, Kripakaran P, Prodanović DM et al (2018) Experimental study on scour at a sharp-nose bridge pier with debris blockage. J Hydraul Eng 144:04018071. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001516
  • 23. Ebrahimi M, Djordjević S, Panici D et al (2020) A method for evaluating local scour depth at bridge piers due to debris accumulation. Proc Inst Civ Eng Bridg Eng 173:86–99. https://doi.org/10.1680/jbren.19.00045
  • 24. Ebrahimi M, Kahraman M;, Kripakaran R; (2017) Scour and hydrodynamic effects of debris blockage at masonry bridges: insights from experimental and numerical modelling A NOTE ON VERSIONS. International Association for Hydro-Environment Engineering and Research (IAHR)
  • 25. Froehlich DC (2013) Protecting bridge piers with loose rock riprap. J Appl Water Eng Res 1:39–57. https://doi.org/10.1080/23249676.2013.828486
  • 26. Gaudio R, Tafarojnoruz A, Calomino F (2012) Combined flow-altering countermeasures against bridge pier scour. J Hydraul Res 50:35–43. https://doi.org/10.1080/00221686.2011.649548
  • 27. Ghorbani B, Kells JA (2008) Effect of submerged vanes on the scour occurring at a cylindrical pier. J Hydraul Res 46:610–619. https://doi.org/10.3826/jhr.2008.3003
  • 28. Grimaldi C, Gaudio R, Calomino F, Cardoso AH (2009a) Countermeasures against local scouring at bridge piers: slot and combined system of slot and bed sill. J Hydraul Eng 135:425–431. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000035
  • 29. Grimaldi C, Gaudio R, Calomino F, Cardoso AH (2009b) Control of scour at bridge piers by a downstream bed sill. J Hydraul Eng 135:13–21. https://doi.org/10.1061/(ASCE)0733-9429(2009)135:1(13)
  • 30. Guo X, Zhang C, Chen ZQ (2020) Dynamic performance and damage evaluation of a scoured double-pylon cable-stayed bridge under ship impact. Eng Struct 216:110772. https://doi.org/10.1016/j.engstruct.2020.110772
  • 31. Hajikandi H, Golnabi M (2018) Y-shaped and T-shaped slots in river bridge piers as scour countermeasures. Proc Inst Civ Eng - Water Manag 171:253–263. https://doi.org/10.1680/jwama.16.00063
  • 32. Hamidifar H, Omid MH, Nasrabadi M (2018a) Reduction of Scour Using a Combination of Riprap and Bed Sill 171:264–270. https://doi.org/10.1680/jwama.16.00073
  • 33. Hamidifar H, Nasrabadi M, Omid MH (2018b) Using a bed sill as a scour countermeasure downstream of an apron. Ain Shams Eng J 9:1663–1669. https://doi.org/10.1016/j.asej.2016.08.016
  • 34. Hamidifar H, Zanganeh-Inaloo F, Carnacina I (2021) Hybrid scour depth prediction equations for reliable design of bridge piers. Water 2021(13):2019. https://doi.org/10.3390/W13152019
  • 35. Hamidifar H, Shahabi-Haghighi SMB, Chiew YM (2022) Collar performance in bridge pier scour with debris accumulation. Int J Sediment Res 37: 328-334. https://doi.org/10.1016/J.IJSRC.2021.10.002
  • 36. Heidarpour M (2002) Control and reduction of local scour at bridge piers by using slot. In: Bousmar D, Zech Y (eds) River Flow: Proceedings of the International Conference on Fluvial Hydraulics. IAHR, Louvain-la-Neuve, Belgium, pp 1069–1072
  • 37. Heidarpour M, Afzalimehr H, Izadinia E (2010) Reduction of local scour around bridge pier groups using collars. Int J Sediment Res 25:411–422. https://doi.org/10.1016/S1001-6279(11)60008-5
  • 38. Hosseini SA, Osroush M, Kamanbedast AA, Khosrojerrdi A (2020) The effect of slot dimensions and its vertical and horizontal position on the scour around bridge abutments with vertical walls. Sadhana - Acad Proc Eng Sci 45:1–16. https://doi.org/10.1007/s12046-020-01343-z
  • 39. Jamei M, Ahmadianfar I (2020) Prediction of scour depth at piers with debris accumulation effects using linear genetic programming. Mar Georesources Geotechnol 38:468–479. https://doi.org/10.1080/1064119X.2019.1595793
  • 40. Kail J (2003) Influence of large woody debris on the morphology of six central European streams. Geomorphology 51:207–223. https://doi.org/10.1016/S0169-555X(02)00337-9
  • 41. Khaple S, Hanmaiahgari PR, Gaudio R, Dey S (2017) Splitter plate as a flow-altering pier scour countermeasure. Acta Geophys 65:957–975. https://doi.org/10.1007/s11600-017-0084-z
  • 42. Korkut R, Martinez EJ, Morales R et al (2007) Geobag performance as scour countermeasure for bridge abutments. J Hydraul Eng 133:431–439. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:4(431)
  • 43. Kumar V, Raju KGR, Vittal N (1999) Reduction of local scour around bridge piers using slots and collars. J Hydraul Eng 125:1302–1305. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:12(1302)
  • 44. Lagasse PF, Zevenbergen LW, Clopper PE (2010) Impacts of debris on bridge pier scour. Scour and Erosion. American Society of Civil Engineers, Reston, VA, pp 854–863
  • 45. Lauchlan CS, Melville BW (2001) Riprap protection at bridge piers. J Hydraul Eng 127:412–418. https://doi.org/10.1061/(ASCE)0733-9429(2001)127:5(412)
  • 46. Lee SO, Sturm TW (2009) Effect of sediment size scaling on physical modeling of bridge pier scour. J Hydraul Eng 135:793–802. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000091
  • 47. Lin C, Bennett C, Han J, Parsons RL (2012) Integrated analysis of the performance of pile-supported bridges under scoured conditions. Eng Struct 36:27–38. https://doi.org/10.1016/j.engstruct.2011.11.015
  • 48. Lyn DA, Cooper TJ, Condon CA, Gan L (2007) Factors in debris accumulation at bridge piers. Purdue University, West Lafayette, Indiana
  • 49. Magilligan FJ, Nislow KH, Fisher GB et al (2008) The geomorphic function and characteristics of large woody debris in low gradient rivers, coastal Maine, USA. Geomorphology 97:467–482. https://doi.org/10.1016/j.geomorph.2007.08.016
  • 50. Masjedi A, Bejestan MS, Esfandi A (2010) Reduction of local scour at a bridge pier fitted with a collar in a 180 degree flume bend (Case study: oblong pier). J Hydrodyn Ser B 22:669–673. https://doi.org/10.1016/S1001-6058(10)60012-1
  • 51. Melville BW, Coleman SE (2000) Bridge Scour . Water Resources Publication.
  • 52. Melville BW, Chiew Y-MM (1999) Time scale for local scour at bridge piers. J Hydraul Eng 125:59–65. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:1(59)
  • 53. Melville BW, Dongol DM (1992) Bridge pier scour with debris accumulation. J Hydraul Eng 118:1306–1310. https://doi.org/10.1061/(ASCE)0733-9429(1992)118:9(1306)
  • 54. Melville BW, Hadfield AC (1999) Use of sacrificial piles as pier scour countermeasures. J Hydraul Eng 125:1221–1224. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:11(1221)
  • 55. Memar S, Zounemat-Kermani M, Beheshti A et al (2020) Influence of collars on reduction in scour depth at two piers in a tandem configuration. Acta Geophys 68:229–242. https://doi.org/10.1007/s11600-019-00393-0
  • 56. Moncada-M AT, Aguirre-Pe J, Bolívar JC, Flores EJ (2009) Scour protection of circular bridge piers with collars and slots. J Hydraul Res 47:119–126. https://doi.org/10.3826/jhr.2009.3244
  • 57. Mueller DS, Parola AC (1998) Detailed scour measurements around a debris accumulation. International Water Resources Engineering Conference. ASCE, Memphis, TN, USA, pp 234–239
  • 58. Müller G, Mach R, Kauppert K (2001) Mapping of bridge pier scour with projection moiré. J Hydraul Res 39:531–537. https://doi.org/10.1080/00221686.2001.9628277
  • 59. Obied N, Khassaf S (2019) Experimental study for protection of piers against local scour using slots. Int J Eng 32:217–222
  • 60. Osrush M, Hosseini SA, Kamanbedast AA (2020) Evaluation and comparison of the slots and collars performance in reducing scouring around bridge abutments. Amirkabir J Civ Eng 52: 1637–1650. https://doi.org/10.22060/ceej.2019.15565.5953
  • 61. Pagliara S, Carnacina I (2011) Influence of wood debris accumulation on bridge pier scour. J Hydraul Eng 137:254–261. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000289
  • 62. Pagliara S, Carnacina I (2013) Bridge pier flow field in the presence of debris accumulation. Proc Inst Civ Eng - Water Manag 166:187–198. https://doi.org/10.1680/wama.11.00060
  • 63. Pagliara S, Carnacina I, Cigni F (2010) Sills and gabions as countermeasures at bridge pier in presence of debris accumulations. J Hydraul Res 48:764–774. https://doi.org/10.1080/00221686.2010.528184
  • 64. Pandey M, Oliveto G, Pu JH et al (2020) Pier scour prediction in non-uniform gravel beds. Water (switzerland) 12:1696. https://doi.org/10.3390/W12061696
  • 65. Panici D, de Almeida GAM (2018) Formation, growth, and failure of debris jams at bridge piers. Water Resour Res 54:6226–6241. https://doi.org/10.1029/2017WR022177
  • 66. Panici D, de Almeida GAM (2020) Influence of pier geometry and debris characteristics on wood debris accumulations at bridge piers. J Hydraul Eng 146:04020041. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001757
  • 67. Panici D, Kripakaran P (2021) Trapping large wood debris in rivers: experimental study of novel debris retention system. J Hydraul Eng 147:04020101. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001859
  • 68. Park JH, Sok C, Park CK, Do KY (2016) A study on the effects of debris accumulation at sacrificial piles on bridge pier scour: I. Experimental Results KSCE J Civ Eng 20:1546–1551. https://doi.org/10.1007/s12205-015-0207-5
  • 69. Pasokhi-Dargah Z, Esmaeili-Varaki M, Shafee-Sabet B (2018) Study of local scour around vertical bridge pier groups in presence of debris accumulation. Irrig Drain Struct Eng Res 18:1–16
  • 70. Pizarro A, Manfreda S, Tubaldi E (2020) The science behind scour at bridge foundations: a review. Water 12:374. https://doi.org/10.3390/W12020374
  • 71. Rahimi E, Qaderi K, Rahimpour M, Ahmadi MM (2018) Effect of debris on piers group scour: an experimental study. KSCE J Civ Eng 22:1496–1505. https://doi.org/10.1007/s12205-017-2002-y
  • 72. Rahimi E, Qaderi K, Rahimpour M et al (2020) Scour at side by side pier and abutment with debris accumulation. Mar Georesources Geotechnol. https://doi.org/10.1080/1064119x.2020.1716122
  • 73. Ruiz-Villanueva V, Piégay H, Gurnell AA et al (2016) Recent advances quantifying the large wood dynamics in river basins: New methods and remaining challenges. Rev Geophys 54:611–652. https://doi.org/10.1002/2015RG000514
  • 74. Schalko I, Lageder C, Schmocker L et al (2019) Laboratory flume experiments on the formation of spanwise large wood accumulations: part ii-effect on local scour. Water Resour Res 55:4871–4885. https://doi.org/10.1029/2019WR024789
  • 75. Schmocker L, Hager WH (2013) Scale modeling of wooden debris accumulation at a debris rack. J Hydraul Eng 139:827–836. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000714
  • 76. Schmocker L, Weitbrecht V (2013) Driftwood: risk analysis and engineering measures. J Hydraul Eng 139:683–695. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000728
  • 77. Scozzese F, Ragni L, Tubaldi E, Gara F (2019) Modal properties variation and collapse assessment of masonry arch bridges under scour action. Eng Struct 199:109665. https://doi.org/10.1016/j.engstruct.2019.109665
  • 78. Sharma S (1999) Effect of Slot on Scour around a Pier. Kurukshetra University
  • 79. Tafarojnoruz A, Gaudio R (2011) Sills and gabions as countermeasures at bridge pier in the presence of debris accumulations. J Hydraul Res 49:832–833
  • 80. Tafarojnoruz A, Gaudio R, Calomino F (2012) Evaluation of flow-altering countermeasures against bridge pier scour. J Hydraul Eng 138:297–305. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000512
  • 81. Tanaka S, Yano M (1967) Local scour around a circular cylinder. In: Twelfth congress of the international association for hydraulic research. pp 193–201
  • 82. Tang HW, Ding B, Chiew YM, Fang SL (2009) Protection of bridge piers against scouring with tetrahedral frames. Int J Sediment Res 24:385–399. https://doi.org/10.1016/S1001-6279(10)60012-1
  • 83. Tubaldi E, Macorini L, Izzuddin BA et al (2017) A framework for probabilistic assessment of clear-water scour around bridge piers. Struct Saf 69:11–22. https://doi.org/10.1016/j.strusafe.2017.07.001
  • 84. Unger J, Hager WH (2006) Riprap failure at circular bridge piers. J Hydraul Eng 132:354–362. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:4(354)
  • 85. Vijayasree BA, Eldho TI, Mazumder BS, Ahmad N (2019) Influence of bridge pier shape on flow field and scour geometry. Int J River Basin Manag 17:109–129. https://doi.org/10.1080/15715124.2017.1394315
  • 86. Wardhana K, Hadipriono FC (2003) Analysis of recent bridge failures in the United States. J Perform Constr Facil 17:144–150
  • 87. Wohl E, Kramer N, Ruiz-Villanueva V et al (2019) The natural wood regime in rivers. Bioscience 69:259–273. https://doi.org/10.1093/BIOSCI/BIZ013
  • 88. Yoon TH, Kim D-H (2001) Bridge pier scour protection by sack gabions. Bridging the Gap. American Society of Civil Engineers, Reston, VA, pp 1–8
  • 89. Zarei E, Vaghefi M, Hashemi SS (2019) Bed topography variations in bend by simultaneous installation of submerged vanes and single bridge pier. Arab J Geosci 12:1–10. https://doi.org/10.1007/s12517-019-4342-z
  • 90. Zarrati AR, Gholami H, Mashahir MB (2004) Application of collar to control scouring around rectangular bridge piers. J Hydraul Res 42:97–103. https://doi.org/10.1080/00221686.2004.9641188
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-05e9c7bc-2d5a-49ef-a7bb-138f5f0658aa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.