Warianty tytułu
Wysoka wydajność bezpośredniego sterowania mocą dla podwójnie zasilanego generatora indukcyjnego opartego na adaptacyjnym rozmytym kontrolerze trybu ślizgowego drugiego rzędu w systemie konwersji energii wiatrowej
Języki publikacji
Abstrakty
In this paper, adaptive fuzzy second order sliding mode direct power control strategy is applied for a doubly fed induction generator based wind energy generation system. The conventional direct power control with hysteresis regulators has significant active and reactive power ripples at steady-state operation and also the switching frequency varies in a wide range. The proposed direct power control reduces active, reactive and current ripples. It also narrows down the switching frequency variations in induction machine control. The stator active power reference is given through the fuzzy logic MPPT algorithm to extract the maximum of wind power available at the turbine pales. The simulation results show that the proposed direct power control provides significantly improved control performance especially when compared to the conventional direct power control control.
W tym artykule zastosowano adaptacyjną strategię sterowania mocą ślizgową rozmytą drugiego rzędu w dwustronnie zasilanym systemie wytwarzania energii wiatrowej opartym na generatorze indukcyjnym. Konwencjonalna bezpośrednia regulacja mocy z regulatorami histerezy ma znaczne wahania mocy czynnej i biernej podczas pracy w stanie ustalonym, a także częstotliwość przełączania zmienia się w szerokim zakresie. Zaproponowana bezpośrednia regulacja mocy ogranicza tętnienia czynne, bierne i prądowe. Zawęża również zmiany częstotliwości przełączania w sterowaniu maszyną indukcyjną. Wartość odniesienia mocy czynnej stojana jest podawana za pomocą algorytmu MPPT z logiką rozmytą w celu wyodrębnienia maksymalnej mocy wiatru dostępnej na łopatkach turbiny. Wyniki symulacji pokazują, że proponowana bezpośrednia regulacja mocy zapewnia znacznie lepszą wydajność regulacji, zwłaszcza w porównaniu z konwencjonalną bezpośrednią regulacją mocy.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
66--74
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
autor
- Technology University of Moulay Tahar, Saida, Algeria, d_cherifi@yahoo.fr
autor
- Technology University of Moulay Tahar, Saida, Algeria, miloudyahiadz@yahoo.fr
autor
- Technology University of Moulay Tahar, Saida, Algeria, mostefaimed@yahoo.fr
Bibliografia
- [1] A. Kassem, K. Hasaneen, and A. Yousef, "Dynamic modeling and robust power control of DFIG driven by wind turbine at infinite grid", Electrical Power and Energy Systems, 2013, pp. 375–382.
- [2] H. Ibrahim, M. Ghandour, M. Dimitrova, A. Ilinca, J. Perron, "Integration of Wind Energy into Electricity Systems: Technical Challenges and Actual Solutions", Energy Procedia, 2011, pp. 815–824.
- [3] W. Resham, K. Sandeep, S. Rakesh, "Direct active and reactive power control of DFIG for wind energy generation", International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering. Vol. 3, Issue 5, May 2015, pp. 138-143.
- [4] X. Lie, C. Phillip, "Direct Active and Reactive Power Control of DFIG for Wind Energy Generation", IEEE Transactions on Energy Conversion, VOL. 21, NO. 3, September 2006, pp. 750- 758.
- [5] Y. Djeriri, A. Meroufel, A. Massoum, Z. Boudjema, A "Comparative Study Between Field Oriented Control Strategy and Direct Power Control Strategy for DFIG", Journal of Electrical Engineering, 2014.
- [6] F. Taibi, O. Benzineb, M. Tadjine, M. Boucherit, M. Benbouzid, "Hybrid Sliding Mode Control of DFIG with MPPT Using Three Multicellular Converters", Proceedings of the 19th World Congress The International Federation of Automatic Control Cape Town, South Africa. August 24-29, 2014.
- [7] Y. Bekakra, D. Ben Attous, "DFIG sliding mode control fed by back-to-back PWM converter with DC-link voltage control for variable speed wind turbine", Front. Energy, 8(3): 345–354.
- [8] J. Thongam, M. Ouhrouche, "MPPT Control Methods in Wind Energy Conversion Systems", Fundamental and Advanced Topics in Wind Power, June 2011, pp. 339-360.
- [9] W. Chun, Z. Zhe, Q. Wei, Q. Liyan, "Intelligent Maximum Power Extraction Control for Wind Energy Conversion Systems Based on Online Q-learning with Function Approximation", Energy Conversion Congress and Exposition (ECCE), 2014, pp. 4911-4916.
- [10] T. Salma, R. Yokeeswaran, "Pitch Control of DFIG based Wind Energy Conversion System for Maximum Power Point Tracking", International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, Vol. 2, Issue 12, December 2013, pp. 6373-6381.
- [11] P. Ghuman, M. Rachna, "Maximum Power Point Tracking in Wind Energy Generation System using DFIG", International Journal of Engineering Trends and Technology (IJETT), Vol.37, N°7, July 2016, pp. 405-407.
- [12] A. Nazari, H. Heydari, "Direct Power Control Topologies for DFIG-Based Wind Plants", International Journal of Computer and Electrical Engineering, Vol. 4, No. 4, August 2012, pp. 475- 479.
- [13] J. Sung-Tak, L. Sol-Bin, P. Yong-Bae, L. Kyo-Beum, "Direct Power Control of a DFIG in Wind Turbines to Improve Dynamic Responses", Journal of Power Electronics, Vol. 9, No. 5, September 2009, pp. 781-790.
- [14] M. Pichan, H. Rastegar, M. Monfared, "Two fuzzy-based direct power control strategies for doubly-fed induction generators in wind energy conversion systems", Energy, 2013, pp. 154-162.
- [15] D. Kairous, B. Belmadani, "Robust Fuzzy-Second Order Sliding Mode based Direct Power Control for Voltage Source Converter", (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 6, No. 8, 2015, pp. 167-175.
- [16] M. Kazemi, A.S. Yazdankhah, H.M. Kojabadi, "Direct power control of DFIG based on discrete space vector modulation", Elsevier, Renewable Energy, Vol. 35, No. 5, 2010, pp. 1033- 1042.
- [17] M. Kazemi, M. Moradi, R.V. Kazemi, "Minimization of powers ripple of direct power controlled DFIG by fuzzy controller and improved discrete space vector modulation", Elsevier, Electric Power Systems Research, Vol.89, 2012, pp. 23-30.
- [18] Boumerid Bensahila, M. A., Allali, A., Merabet Boulouiha, H., Denai, M. " Modeling, simulation and control of a doubly-fed induction generator for wind energy conversion systems", International Journal of Power Electronics and Drive System (IJPEDS),Vol. 11, No. 3, September 2020, pp. 1197~1210. DOI: 10.11591/ijpeds.v11.i3.pp1197-1210
- [19] Vineet, D., Leena, G. " Comparative study of doubly fed induction generator and permanent magnet synchronous generator in wind energy conversion system", International Journal of Electrical Engineering & Technology (IJEET). Volume 10, Issue 3, May-June 2019, pp. 73-79.
- [20] Moulay, F., Habbatti, A., Hamdaoui, H. "Application and Control of a Doubly Fed Induction Machine Integrated in Wind Energy System", Instrumentation Mesure Métrologie, Vol. 18, No. 3, June, 2019, pp. 257-265
- [21] D. Kumar, K. Chatterjee, "A review of conventional and advanced MPPT algorithms for wind energy systems", Renewable and Sustainable Energy Reviews, 55, 2016, pp. 957-970.
- [22] M.A. Abdullah, A.H.M. Yatim, C.W. Tan, R. Saidur, "A review of maximum power point tracking algorithms for wind energy systems", Renewable and Sustainable Energy Reviews, 16, 2012, pp. 3220-3227.
- [23] S.M. Raza-Kazmi, H. Goto, "A Novel Algorithm for Fast and Efficient Speed-Sensorless Maximum Power Point Tracking in Wind Energy Conversion Systems", IEEE transactions on industrial electronics, Vol. 58, No. 1, JANUARY 2011, pp. 29- 39.
- [24] P. Jyothi, B. Mallika, M. Laxman-Rao, "Improve Wind Power Generation by using Servo Motor", International Journal of Advanced Technology and Innovative Research,Vol.07, Issue.10, August-2015, pp. 1761-1768.
- [25] A. Harrag, S. Messalti, "A variable step size fuzzy MPPT controller improving energy conversion of variable speed DFIG wind turbine", Revue des Energies Renouvelables, Vol. 20 No 2, 2017, pp. 295 - 308.
- [26] Chhipa, A. A., Chakrabarti, P., Bolshev, V., Chakrabarti, T., Samarin, G., Vasilyev, A. N., Ghosh, S., Kudryavtsev, A. " Modeling and Control Strategy of Wind Energy Conversion System with Grid-Connected Doubly-Fed Induction Generator", Energies 2022, 15, 6694. https://doi.org/10.3390/en15186694
- [27] Benbouhenni, H., Boudjema, Z., Bizon, N., Thounthong, P., Takorabet, N. "Direct Power Control Based on Modified Sliding Mode Controller for a Variable-Speed Multi-RotorWind Turbine System Using PWM Strategy", Energies 2022, 15, 3689. https://doi.org/10.3390/ en15103689
- [28] Dekali, Z., Lotfi aghli, L., Boumediene, A." Improved Super Twisting Based High Order Direct Power Sliding Mode Control of a Connected DFIG Variable Speed Wind Turbine", Periodica Polytechnica Electrical Engineering and Computer Science, 2021 https://doi.org/10.3311/PPee.17989
- [29] R. Yerra-Sreenivasa, A. Jaya-Laxmi, "Direct Torque Control of Doubly Fed Induction Generator Based Wind Turbine Under Voltage DIPS", International Journal of Advances in Engineering & Technology, May 2012, Vol. 3, Issue 2, pp. 711- 720.
- [30] Y. Djeriri, A. Meroufel, A. Massoum, Z. Boudjema, "Direct power control of a doubly fed induction generator based wind energy conversion systems including a storage unit", Journal of Electrical Engineering, JEE, Romania, 2014, Vol.14, No.1, pp.196-204.
- [31] A. Mehdi, A. Reama, H.E. Medouce, S.E. Rezgui, H. Benalla, "Direct Active and Reactive Power Control of DFIG Based Wind Energy Conversion System", International Symposium on Power Electronics, Electrical Drives, Automation and Motion, 2014, pp. 1128-1133.
- [32] M.l. Zandzadeh, A. Vahedi, A. Zohoori, "A Novel Direct Power Control Strategy for Integrated DFIG/Active Filter System", 20th Iranian Conference on Electrical Engineering, (ICEE2012), May 15-17, Tehran, Iran, 2012, pp. 564-569.
- [33] S.Y. Liu, V.F. Mendese, S.R. Silva, "Analysis of direct power control strategies applied to doubly fed induction generator", XI Brazilian Power electronics conference, IEEE, 2011, pp. 949- 954.
- [34] M.M. Baggu, L.D. Watson, J.W. Kimball, B.H. Chowdhury, "Direct Power Control of Doubly-Fed Generator Based Wind Turbine Converters to Improve Low Voltage Ride-Through during System Imbalance", twenty-fifth annual IEEE applied power Electronics conference and exposition (APEC), 2010, pp. 2121-2125.
- [35] A. Daoud, F. Ben-Salem, "Direct Power Control of a Doubly Fed Induction Generator Dedicated to Wind Energy Conversions", IEEE, 2014, pp.1-8.
- [36] F. Amrane, A. Chaiba, S. Mekhilef, "High performances of Grid-connected DFIG based on Direct Power Control with Fixed Switching Frequency via MPPT Strategy using MRAC and Neuro-Fuzzy Control", Journal of Power Technologies, Vol 96. No 1, 2016, pp. 27–39.
- [37] P.K. Dash, R.K. Patnaik, "Adaptive second order sliding mode control of doubly fed induction generator in wind energy conversion system", Journal of Renewable and Sustainable Energy, 2014, pp. 1-19.
- [38] A. Bouyekni, R. Taleb, Z. Boudjema, K. Kahal, "A secondorder continuous sliding mode based on DPC for wind-turbine-driven DFIG", ELEKTROTEHNIŠKI VESTNIK, 85(1-2), 2018, pp. 29-36.
- [39] B. Beltran, M.H. benbouzid, A.T. Ahmed, "Second-Order Sliding Mode Control of a Doubly Fed Induction Generator Driven Wind Turbine", IEEE transactions on energy conversion, Vol. 27, NO. 2, JUNE 2012, pp. 261-269.
- [40] S. Benelghali, M. Benbouzid, J.F. Charpentier, T. Ahmed-Ali, L. Munteanu, "High-Order Sliding Mode Control of a Marine Current Turbine Driven Permanent Magnet Synchronous Generator", IEEE, 2009, pp. 1541-1546.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-05da432a-557e-4e95-82d9-a997a94e53f1