Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | Vol. 31, No. 4 | 516--524
Tytuł artykułu

Improved efficiency of p-type quasi-mono silicon blanket emitter solar cell by ion implantation and backside rounding

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A novel type of silicon material, p-type quasi-mono wafer, has been produced using a seed directional solidification technique. This material is a promising alternative to traditional high-cost Czochralski (CZ) and float-zone (FZ) materials. This study evaluates the application of an advanced solar cell process that features a novel method of ion-implantation and backside rounding process on p-type quasi-mono silicon wafer. The ion implantation process substituted for thermal POCl3 diffusion leads to better Rsheet uniformity (<3 %). After screen-printing, the interface of Al and back surface field (BSF) layers was analyzed for the as prepared samples and the samples etched to three different depth. SEM showed that increased etch depth improved both BSF layer and Al–Si layer. The IQE result also showed that the samples with higher etching depth had better performance at long wavelength. The I – V cell tester showed that the sample with the etching depth of 6 μm ± 0.1 μm had the greatest efficiency, due to the highest Voc and Isc. The solar cell fabricated in this innovative process on 156 × 156mm p-type quasi-mono silicon wafer achieved 18.82 % efficiency.
Słowa kluczowe
Wydawca

Rocznik
Strony
516--524
Opis fizyczny
Bibliogr. 16 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Microelectronics & Department of Electrical Engineering, Center for Micro/Nano Science and Technology, Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan
autor
autor
Bibliografia
  • [1] STODDARD N., WU B., WITTING I., WAGENER M., PARK Y., ROZGONYI G., Sol. St. Phen., 131 – 133 (2008), 1.
  • [2] STODDARD N., SIDHU R., CREAGER J., DEY S., KINSEY B., MAISANO L., Proceedings of the 34th IEEE Photovoltaic Specialists Conference (PVSC) 2009, 001163.
  • [3] LOHM¨ULLER E., THAIDIGSMANN B., POSPISCHIL M., J¨AGER U., MACK S., SPECHT J., IEEE Electron Device Lett., 32 (2011), 1719.
  • [4] KIEFER F., ULZH¨OFER C., BRENDEM¨UHL T., HARDER N.P., BRENDEL R., MERTENS V., IEEE J. Phot., 1 (2011), 49.
  • [5] RENSHAW J., ROHATGI A., Proceedings of the 37th IEEE Photovoltaic Specialists Conference (PVSC) 2011; 002924.
  • [6] B¨O SCKE T., HELLRIEGEL R., W¨U THERICH T., BORNSCHEIN L., HELBIG A., CARL R., Proceedings of the 37th IEEE Photovoltaic Specialists Conference (PVSC) 2011; 003663.
  • [7] JEO M., LEE J., KIM S., LEE W., CHO E., Mater Sci Eng: B, 176 (2011), 1285.
  • [8] WOLF H.F., In Semiconductors, John Wiley & Sons Inc., 1971.
  • [9] GROVE A.S., Physics and Technology of Semiconductor Devices, John Wiley & Sons Inc., 1967.
  • [10] MORGAN D.V., BOARD K., COCKRUM R.H., In An introduction to Microelectronic Technology, JohnWiley & Sons Inc., 1985.
  • [11] SZE S.M., In Semiconductor Device Physics and Technology, John Wiley & Sons Inc., 1969.
  • [12] REDFIELD D., Solar Cells, 3 (1981), 27.
  • [13] JELLISON G.E., MODINE F.A., J. Appl. Phys., 53 (1982), 3745.
  • [14] PALIK E.D., Handbook of Optical Constants of Solids, Academic Press, New York, 1985.
  • [15] RUNYAN W.R., SHAFFNER T.J., In Semiconductor Measurements and Instrumentation, McGraw-Hill, New York, 1975.
  • [16] GUO A., YE F., GUO L., JI D., FENG S., J. Semicond., 30 (2009), 2.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-05b33982-152e-46a8-9985-ad2367c25527
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.