Warianty tytułu
Języki publikacji
Abstrakty
The scarcity of groundwater monitoring in Kosovo, particularly in Lipjan, underscores the urgency to assess and safeguard this vital resource amidst escalating water demands and mounting pollution. This study addresses the critical gap in groundwater data by proposing the establishment of a comprehensive monitoring system. The primary goal was to develop a system capable of providing real-time data on groundwater quality and quantity within the capture area. Specific research objectives include the daily real-time monitoring of groundwater quality, identif ication, and quantification of contaminants in the aquifer, as a basis for further work on delineation of contaminant sources impacting the capture area, and monitoring and quantifying water extraction rates from individual wells, therefore establishing the necessary protection zones. Seven divers have been installed in 7 monitoring wells in Lipjan to measure the water level and pressure, as well as a multiparameter sensor for water quality monitoring for pH, temperature, specific conductivity, total dissolved solids, and dissolved oxygen. The digital monitoring system has been set up to input and log the incoming data. The aim was to gather this data, analyze it and use it to create a model and calibrate it to match the observed data. Concurrently, a sensitivity analysis was performed to prioritize data collection and establish which parameters have the most significant impact on the model outcomes. This ensures the establishment of a model which will, in the future, be used to predict and forecast groundwater levels and quality and determine protection zones.
Czasopismo
Rocznik
Tom
Strony
101--110
Opis fizyczny
Bibliogr. 29 poz., rys.
Twórcy
autor
- Faculty of Civil Engineering, Department of Environmental Engineering and Hydrotechnical Engineering, University of Prishtina “Hasan Prishtina”, St. Agim Ramadani, Prishtina, Kosovo
autor
- Faculty of Civil Engineering, Department of Environmental Engineering, University of Prishtina “Hasan Prishtina”, St. Agim Ramadani, Prishtina, Kosovo, vlere.krasniqi@uni-pr.edu
autor
- Faculty of Civil Engineering, Department of Hydrotechnical Engineering, University of Prishtina “Hasan Prishtina”, St. Agim Ramadani, Prishtina, Kosovo, laura.kusari@uni-pr.edu
autor
- Faculty of Civil Engineering, Department of Hydrotechnical Engineering, University of Prishtina “Hasan Prishtina”, St. Agim Ramadani, Prishtina, Kosovo, venera.hajdari@uni-pr.edu
Bibliografia
- 1. Government of the Republic of Kosovo. 2021. Administrative Instruction (Grk) No. 10/2021 on the Quality of Water Intended for Human Consumption. Prishtina, Kosovo.
- 2. Affairs, I.M.F.F. 2023. Republic of Kosovo: Technical Assistance Report-Public Investment Management Assessment Update and Climate PIMA. International Monetary Fund
- 3. Bublaku, S. 2021. Influencing factors in the occurrence of floods in the urban areas of Prishtina and Fushë Kosovë. In E. Hajrizi (Ed.), UBT International Conference. University for Business and Technology of Kosovo.
- 4. Bunting, S.Y., Lapworth, D.J., Crane, E.J., GrimaOlmedo, J., Koroša, A., Kuczyńska, A., Mali, N., Rosenqvist, L., van Vliet, M.E., Togola, A., Lopez, B. 2021. Emerging organic compounds in European groundwater. Environmental Pollution, 269, 115945. https://doi.org/10.1016/j.envpol.2020.115945
- 5. Silva, R.C.G., Reinecke, R., Copty, N.K., Barry, D.A., Heggy, E., Labat, D., Roggero, P.P., Borchardt, D., Rode, M., Gómez-Hernández, J.J., Jomaa, S. 2024. Multi-decadal groundwater observations reveal surprisingly stable levels in southwestern Europe. Communications Earth & Environment, 5(1), 387. https://doi.org/10.1038/s43247-024-01554-w
- 6. Condon, L.E., Kollet, S., Bierkens, M.F.P., Fogg, G.E., Maxwell, R.M., Hill, M.C., Fransen, H.-J.H., Verhoef, A., Van Loon, A.F., Sulis, M., Abesser, C. 2021. Global groundwater modeling and monitoring: opportunities and challenges. Water Resources Research, 57(12), e2020WR029500. https://doi.org/10.1029/2020WR029500
- 7. Dąbrowska, D., Witkowski, A.J. 2022. Groundwater and human health risk assessment in the vicinity of a municipal waste landfill in Tychy, Poland. Applied Sciences (Switzerland), 12(24). https://doi.org/10.3390/app122412898
- 8. Dassargues, A. 2019. Hydrogeology: Groundwater science and engineering (1st ed.). Taylor & Francis Group, LLC.
- 9. Division for Industrial Policy. 2020. Report 2019: Manufacturing Industry - Sector C.
- 10. Domenico, P.A., Patrick A., Schwartz, F.W., Franklin W. 1998. Physical and chemical hydrogeology. Wiley.
- 11. Fetter, C.W., Charles W. 2014. Applied Hydrogeology (4th ed.). Pearson Education Limited.
- 12. Gashi, F., Faiku, F., Hetemi, S., Bresa, F., Gashi, S. 2016. The effect of anthropogenic activity on the underground water quality in the territory of Lipjan (Kosovo). A Statistical Approach. Mor. J. Chem., 4, 187–196.
- 13. Gilli, É., Mangan, C., Mudry, J. 2012. Hydrogeology: Objectives, Methods, Applications (1st ed.). Taylor & Francis Group, LLC. www.taylorandfrancisgroup.com
- 14. Hiscock, K., Bense, V. 2014. Hydrogeology: Principles and Practice (2nd ed.). John Wiley & Sons Ltd.
- 15. Hölting, B., Coldewey, W.G. 2019. Hydrogeology (1st ed.). Springer-Verlag GmbH Germany. http:// www.springer.com/series/15201
- 16. Karamouz, M., Ahmadi, A., Akhbari, M. 2011. Groundwater Hydrology: Engineering, Planning, and Management (1st ed.). Taylor & Francis Group, LLC.
- 17. Krogulec, E., Małecki, J.J., Porowska, D., Wojdalska, A. 2020. Assessment of causes and effects of groundwater level change in an urban area (Warsaw, Poland). Water (Switzerland), 12(11), 1–17. https://doi.org/10.3390/w12113107
- 18. Liu, C., Liu, H., Yu, Y., Zhao, W., Zhang, Z., Guo, L., Yetemen, O. 2021. Mapping groundwater-dependent ecosystems in arid Central Asia: Implications for controlling regional land degradation. Science of The Total Environment, 797, 149027. https://doi.org/10.1016/j.scitotenv.2021.149027
- 19. Nistor, M.-M. 2020. Groundwater vulnerability in Europe under climate change. Quaternary International, 547, 185–196. https://doi.org/10.1016/j.quaint.2019.04.012
- 20. Osmanaj, L., Hajra, A., Berisha, A. 2021. Determination of groundwater protection zones of the pozharan wellfield using hydrogeological modflow model. Journal of Ecological Engineering, 22(3), 73–81. https://doi.org/10.12911/22998993/132429
- 21. Osmanaj, L., Hajra, A., Berisha, A., de Beyer, T. 2021. The journey of establishing groundwater source protection zones in kosovo on the example of Lipjan municipality. Ecological Engineering and Environmental Technology, 22(3), 20–26. https://doi.org/10.12912/27197050/134753
- 22. Podlasek, A., Jakimiuk, A., Vaverková, M.D., Koda, E. 2021. Monitoring and assessment of groundwater quality at landfill sites: Selected case studies of poland and the czech republic. Sustainability (Switzerland), 13(14). https://doi.org/10.3390/su13147769
- 23. Qeriqi, M. 2016. Analiza e projektit te kanalizimi fekal fsh. Mirenë. https://knowledgecenter.ubt-uni.net/etd
- 24. Quevauviller, P., Fouillac, A.M., Grath, J., Ward, R. 2009. Groundwater monitoring. Wiley Chichester.
- 25. Ram, A., Tiwari, S.K., Pandey, H.K., Chaurasia, A.K., Singh, S., Singh, Y.V. 2021. Groundwater quality assessment using water quality index (WQI) under GIS framework. Applied Water Science, 11(2), 46. https://doi.org/10.1007/s13201-021-01376-7
- 26. Rusiniak, P., Kmiecik, E., Wątor, K., Duda, R., Bugno, R. 2021. Pharmaceuticals and personal care products in the urban groundwater – preliminary monitoring (case study: Kraków, Southern Poland). Urban Water Journal, 18(5), 364–374. https://doi.org/10.1080/1573062X.2021.1893354
- 27. Sethi, R., Di Molfetta, A. 2019. Groundwater Engineering: A Technical Approach to Hydrogeology, Contaminant Transport and Groundwater Remediation (G. Solari, S.-H. Chen, M. Di Prisco, I. Vayas, Eds.; 1st ed.). Springer Nature Switzerland AG. http://www.springer.com/series/15088
- 28. Simeone, R.A., Mekolli, E. 2023. Hydraulic analysis of the Prishtina covered river under current conditions. UBT International Conference.
- 29. Zan, J., Dong, Y., Zhang, W., Xu, W., Li, J., Gao, B., Hu, F., Wang, Q. 2019. Distribution characteristics of dissolved oxygen and stable isotope compositions of shallow groundwater in the vicinity of an inland nuclear power plant, HK, China. E3S Web of Conferences, 98. https://doi.org/10.1051/ e3sconf/20199809035
Uwagi
DOI błędnie podane w pdf
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-05a4e53c-62da-4e92-a85f-ea46e8a636ed