Warianty tytułu
Języki publikacji
Abstrakty
Cotton-like CoS cluster has been successfully synthesized via a simple one-step hydrothermal route assisted by diethylenetriamine (DETA) as a ligand and structure-directing agent. The structure and morphology of the product were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM) and N2 adsorption-desorption isotherm. The CoS sample which has a hexagonal phase without any impurities possesses a microscopic morphology made by cotton-like clusters. The as-fabricated CoS as a supercapacitor electrode presents desirable supercapacitive performance with a high specific capacitance (664 F·g-1 at 0.5 A·g-1), remarkable rate capability and excellent cycling stability (85.7 % specific capacitance retention after 1000 cycles), making it applicable as an electrode for high-performance supercapacitors.
Czasopismo
Rocznik
Tom
Strony
297--303
Opis fizyczny
Bibliogr. 37 poz., rys.
Twórcy
autor
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, PR China
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
autor
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
autor
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, PR China
autor
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, PR China, yangjuan6347@ujs.edu.cn
Bibliografia
- [1] SUN M.C., SUN M.F., YANG H.X., SONG W.H., SUN S.N., Ceram. Int., 43 (2017), 363.
- [2] ZHANG J.H., KONG Q.H., YANG L.W., WANG D.Y., Green Chem., 18 (2016), 3066.
- [3] KONG X.W., ZHANG R.L., ZHONG S.K., WU L., Mater. Sci.-Poland, 34 (2016), 227.
- [4] SHARMA P., BHATTI T.S., Energ. Convers. Manage., 51 (2010), 2901.
- [5] SIMON P., GOGOTTSI Y., Nat. Mater., 7 (2008), 845.
- [6] WINTER M., BRODD R.J., Chem. Rev., 4245 (2004), 104.
- [7] YU X., LI Z.H., LIU J.W., HU P.A., Appl. Catal. BEnviron., 205 (2017), 271.
- [8] HU Y.Z., WANG X.X., ZOU Y.D., WEN T., WANG X.L., ALSAEDI A., HAYAT T., WANG X.K., Chem. Eng. J., 316 (2017), 419.
- [9] SUN M.J., SONG G.Q., LIU J.J., CHEN H.M., NIE F.Q., RSC Adv., 7 (2017), 13637.
- [10] YANG Q.M., ZHAO L., XU X., XU L., LUO Y.Z., Nat. Commun., 2 (2011), 381.
- [11] HUANG M., MI K., ZHANG J.H., LIU H.L., YU T.T., YUANG A.H., KONG Q.H., XIONG S.L., J. Mater. Chem. A, 5 (2017), 266.
- [12] MAQBOOL Q., SINGH C., JASH P., PAUL A., SRIVASTAVA A., Chem. Eur. J., 23 (2017), 24216.
- [13] FAN H.L., NIU R.T., DUAN J.Q., LIU W., SHEN W.Z., ACS Appl. Mater. Int., 8 (2016), 19475.
- [14] BARKAOUI S., HADDAOUI M., DHAOUADI H., RAOUAFI N., TOUATI F., J. Solid State Chem., 228 (2015), 26.
- [15] CHIU J.M., LIN L.Y., YEH P.H., LAI C.Y., TENG K., TU C.C., YANG S.S., YU J.F., RSC Adv., 5 (2015), 83383.
- [16] RANAWEERA C.K., WANG Z., ALQURASHI E., KAHOL P.K., DVOMIC P.R., GUPTA B.K., RAMASAMY K., MOHITE A.D., GUPTA G., GUPTA R.K., J. Mater. Chem. A, 4 (2016), 9014.
- [17] JUSTIN P., RAO G.R., Int. J. Hydrogen Energ., 35 (2010), 9709.
- [18] LIN J.Y., CHOU S.W., RSC Adv., 3 (2013), 2043.
- [19] YOU B., JIANG N., SHENG M.L., SUN Y.J., Chem. Commun., 51 (2015), 4252.
- [20] XIE D.Y., JIANG Q., FU G.G., DONG Y., KANG X.M., CAO W., ZHAO Y., Rare Metal Mat. Eng., 30 (2011), 94.
- [21] ZHANG Y.F., Mater. Sci.-Poland, 35 (2017), 188.
- [22] LI H. J., SUN L.M., LIU Z.H., Acta Crystallogr. E, 62 (2006), 2522.
- [23] COULDWELL M.C., HOUSE D.A., PENFOLD B.R., Inorg. Chim. Acta, 13 (1975), 61.
- [24] WANG P., GUO Y.F., ZHAO C.W., YAN J.J., LU P., Appl. Energ., 201 (2017), 34.
- [25] KHAN M.A., KANG Y.M., Mater. Lett., 156 (2015), 209.
- [26] MAHFOUZ M.G., GALHOUM A.A., GOMAA N.A., ABDELREHEM S.S., ATIA A.A., VINCENT T., GUIBAL E., Chem. Eng. J., 262 (2015), 198.
- [27] XING J.C., ZHU Y.L., ZHOU Q.W., ZHENG X.D., JIAO Q.J., Electrochim. Acta, 136 (2014), 550.
- [28] TAO F., ZHAO Y.Q., ZHANG G.Q., LI H.L., Electrochem. Commun., 9 (2007), 1282.
- [29] ZHANG C., CHEN Q., ZHAN H., ACS Appl. Mater. Inter., 8 (2016), 22977.
- [30] JIANG C., ZHAO B., CHENG J.Y., LI J.Q., ZHANG H.J., TANG Z.H., YANG J.H., Electrochim. Acta, 173 (2015) 399.
- [31] LEE J.W., AHN T., SOUNDARARAJAN D., KO J.M., KIM J.D., Chem. Commun., 47 (2011), 6305.
- [32] LIU B., YUAN H., ZHANG Y., ZHOU Z., SONG D., J. Power Sources, 79 (1999), 277.
- [33] XU Q., JIANG D.L., WANG T.Y., MENG S.C., CHEN M., RSC Adv., 6 (2016), 55039.
- [34] ZHAO J., GUAN B., HU B., XU Z.Y., WANG D.W., ZHANG H.H., Electrochim. Acta, 230 (2017), 428.
- [35] CONG H.P., REN X.C., WANG P., YU S.H., ACS Nano., 6 (2012), 2693.
- [36] HOSSEINI M.G., SHAHRYARI E., J. Colloid Interf. Sci., 496 (2017), 371.
- [37] ZHANG Q.F., XU C.M., LU B.G., Electrochim. Acta, 132 (2014) 180.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-0561b76b-8542-4792-9995-f593575204cd