Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | Vol. 159, nr 4 | 385--428
Tytuł artykułu

Some Novel Pythagorean Fuzzy Interaction Aggregation Operators in Multiple Attribute Decision Making

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we investigate the multiple attribute decision making problems with Pythagorean fuzzy information. Then, we utilize arithmetic and geometric operations to develop some Pythagorean fuzzy interaction aggregation operators: Pythagorean fuzzy interaction weighted average (PFIWA) operator, Pythagorean fuzzy interaction weighted geometric (PFIWG) operator, Pythagorean fuzzy interaction ordered weighted average (PFIOWA) operator, Pythagorean fuzzy interaction ordered weighted geometric (PFIOWG) operator, Pythagorean fuzzy interaction hybrid average (PFIHA) operator, Pythagorean fuzzy interaction hybrid geometric (PFIHG) operator, Pythagorean fuzzy interaction correlate aggregation operators, Pythagorean fuzzy interaction induced aggregation operators, Pythagorean fuzzy interaction induced correlate aggregation operators, Pythagorean fuzzy interactive power arithmetic and geometric aggregation operators. The prominent characteristic of these proposed operators are studied. Then, we have utilized these operators to develop some approaches to solve the Pythagorean fuzzy multiple attribute decision making problems. Finally, a practical example for selecting the service outsourcing provider of communications industry is given to verify the developed approach and to demonstrate its practicality and effectiveness.
Wydawca

Rocznik
Strony
385--428
Opis fizyczny
Bibliogr. 103 poz., tab.
Twórcy
autor
  • School of Business, Sichuan Normal University, Chengdu, 610101, P.R. China
autor
  • School of Business, Sichuan Normal University, Chengdu, 610101, P.R. China
autor
  • School of Business, Sichuan Normal University, Chengdu, 610101, P.R. China, weiguiwu@163.com
autor
  • School of Finance, Yunnan University of Finance and Economics, Kunming, 650221, China
Bibliografia
  • [1] Atanassov K. Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 1986;20(1):87-96. URL https://doi.org/10.1016/S0165-0114(86)80034-3.
  • [2] Atanassov K. More on intuitionistic fuzzy sets, Fuzzy Sets and Systems, 1989;33(1):37-46. URL https://doi.org/10.1016/0165-0114(89)90215-7.
  • [3] Zadeh LA. Fuzzy sets, Information and Control, 1965;8(3):338-356. URL https://doi.org/10.1016/S0019-9958(65)90241-X.
  • [4] Xu ZS. Intuitionistic fuzzy aggregation operators, IEEE Transations on Fuzzy Systems, 2007;15(6):1179-1187. doi:10.1109/TFUZZ.2006.890678.
  • [5] Xu ZS, and Yager RR. Some geometric aggregation operators based on intuitionistic fuzzy sets, International Journal of General System, 2006;35(4):417-433. URL https://doi.org/10.1080/03081070600574353.
  • [6] Xu ZS, and Yager RR. Dynamic intuitionistic fuzzy multi-attribute decision making, International Journal of Approximate Reasoning, 2008;48(1):246-262. URL https://doi.org/10.1016/j.ijar.2007.08.008.
  • [7] Wei GW. Some geometric aggregation functions and their application to dynamic multiple attribute decision making in intuitionistic fuzzy setting, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2009;17(2):179-196. doi:10.1142/S0218488509005802.
  • [8] Wei GW, and Zhao XF. Some induced correlated aggregating operators with intuitionistic fuzzy information and their application to multiple attribute group decision making, Expert Systems with Applications, 2012;39(2):2026-2034. URL https://doi.org/10.1016/j.eswa.2011.08.031.
  • [9] Wei GW. Some induced geometric aggregation operators with intuitionistic fuzzy information and their application to group decision making, Applied Soft Computing, 2010;10(2):423-431. URL https://doi.org/10.1016/j.asoc.2009.08.009.
  • [10] Xu ZS. Approaches to multiple attribute group decision making based on intuitionistic fuzzy power aggregation operators, Knowledge-Based Systems 2011;24(6):749-760. URL https://doi.org/10.1016/j.knosys.2011.01.011.
  • [11] Xu ZS, and Xia MM. Induced generalized intuitionistic fuzzy operators, Knowledge-Based Systems, 2011;24(2):197-209. URL https://doi.org/10.1016/j.knosys.2010.04.010.
  • [12] Xu ZS, and Chen Q. A multi-criteria decision making procedure based on intuitionistic fuzzy Bonferroni means, Journal of Systems Science and Systems Engineering, 2011;20(2):217-228. doi:10.1007/s11518-011-5163-0.
  • [13] Yu DJ, Wu YY, and Lu T. Intuitionistic fuzzy prioritized operators and their application in group decision making, Knowledge-Based Systems, 2012;30:57-66. URL https://doi.org/10.1016/j.knosys.2011.11.004.
  • [14] Yu DJ. Intuitionistic fuzzy geometric Heronian mean aggregation operators. Appl. Soft Comput., 2013;13(2):1235-1246. URL https://doi.org/10.1016/j.asoc.2012.09.021.
  • [15] Wang JQ, Nie RR, Zhang HY, and Chen XH. Intuitionistic fuzzy multi-criteria decision-making method based on evidential reasoning. Applied Soft Computing, 2013;13(4):1823-1831. URL https://doi.org/10.1016/j.asoc.2012.12.019.
  • [16] Jin FF, Pei LD, Chen HY, and Zhou LG. Interval-valued intuitionistic fuzzy continuous weighted entropy and its application to multi-criteria fuzzy group decision making. Knowledge-Based Systems, 2014;59:132-141. URL https://doi.org/10.1016/j.knosys.2014.01.014.
  • [17] Yue ZL, and Jia YY. A method to aggregate crisp values into interval-valued intuitionistic fuzzy information for group decision making. Applied Soft Computing, 2013;13(5):2304-2317. URL https://doi.org/10.1016/j.asoc.2012.12.032.
  • [18] Chen TY. The inclusion-based TOPSIS method with interval-valued intuitionistic fuzzy sets for multiple criteria group decision making. Appl. Soft Comput., 2015;26:57-73. URL https://doi.org/10.1016/j.asoc.2014.09.015.
  • [19] Shakiba A, Hooshmandasl MR, Davvaz B, and Shahzadeh Fazelim SA. An intuitionistic fuzzy approach to S-approximation spaces. Journal of Intelligent and Fuzzy Systems, 30(6): 3385-3397 (2016).doi:10.3233/IFS-152086.
  • [20] Qi XW, Liang CY, and Zhang JL. Generalized cross-entropy based group decision making with unknown expert and attribute weights under interval-valued intuitionistic fuzzy environment. Computers & Industrial Engineering, 2015;79:52-64. URL https://doi.org/10.1016/j.cie.2014.10.017.
  • [21] Chaira T. Enhancement of medical images in an Atanassov’s’t intuitionistic fuzzy domain using an alternative intuitionistic fuzzy generator with application to image segmentation, Journal of Intelligent and Fuzzy Systems, 2014;27(3):1347-1359. doi:10.3233/IFS-131102.
  • [22] Wei GW. Approaches to interval intuitionistic trapezoidal fuzzy multiple attribute decision making with incomplete weight information, International Journal of Fuzzy Systems, 2015;17(3):484-489. doi:10.1007/s40815-015-0060-1.
  • [23] De SK, and Sana SS. A multi-periods production-inventory model with capacity constraints for multimanufacturers - A global optimality in intuitionistic fuzzy environment. Applied Mathematics and Computation, 2014;242:825-841. URL https://doi.org/10.1016/j.amc.2014.06.075.
  • [24] Verma R, and Sharma BD. A new measure of inaccuracy with its application to multi-criteria decision making under intuitionistic fuzzy environment. Journal of Intelligent and Fuzzy Systems, 2014;27(4):1811-1824. doi:10.3233/IFS-141148.
  • [25] Zhao XF, and Wei GW. Some Intuitionistic Fuzzy Einstein Hybrid Aggregation Operators and Their Application to Multiple Attribute Decision Making, Knowledge-Based Systems, 2013;37:472-479. URL https://doi.org/10.1016/j.knosys.2012.09.006.
  • [26] Deli I, and Çağman N. Intuitionistic fuzzy parameterized soft set theory and its decision making. Applied Soft Computing, 2015;28:109-113. URL https://doi.org/10.1016/j.asoc.2014.11.053.
  • [27] Lin R, Zhao XF, and Wei GW. Fuzzy number intuitionistic fuzzy prioritized operators and their application to multiple attribute decision making, Journal of Intelligent and Fuzzy Systems, 2013;24(4):879-888. doi:10.3233/IFS-2012-0606.
  • [28] Wei GW, Wang HJ, Lin R, and Zhao XF. Grey relational analysis method For intuitionistic fuzzy multiple attribute decision making with preference information on alternatives, International Journal of Computational Intelligence Systems, 2011;4(2):164-173. doi:10.1080/18756891.2011.9727773.
  • [29] Wei GW, and X.F. Zhao, Minimum deviation models for multiple attribute decision making in intuitionistic fuzzy setting, International Journal of Computational Intelligence Systems 4(2) (2011) 174-183.
  • [30] Zeng SZ, and Xiao Y. TOPSIS method for intuitionistic fuzzy multiple-criteria decision making and its application to investment selection. Kybernetes 2016;45(2):282-296. doi:10.1108/K-04-2015-0093.
  • [31] Wei GW. Gray relational analysis method for intuitionistic fuzzy multiple attribute decision making, Expert Systems with Applications, 2011;38(9):11671-11677. URL https://doi.org/10.1016/j.eswa.2011.03.048.
  • [32] Shen F, Xu JP, and Xu ZS. An outranking sorting method for multi-criteria group decision making using intuitionistic fuzzy sets. Information Sciences, 2016;334-335:338-353. URL https://doi.org/10.1016/j.ins.2015.12.003.
  • [33] Chen SM, Cheng SH, and Chiou CH. Fuzzy multiattribute group decision making based on intuitionistic fuzzy sets and evidential reasoning methodology. Information Fusion, 2016;27:215-227.
  • [34] Wei GW, Lu M, Alsaadi FE, Hayat T, and Alsaedi A. Pythagorean 2-tuple linguistic aggregation operators in multiple attribute decision making, Journal of Intelligent and Fuzzy Systems, 33(2) (2017): 1129-1142. doi:10.3233/JIFS-16715.
  • [35] Wei GW, Wang HJ, and Lin R. Application of correlation coefficient to interval-valued intuitionistic fuzzy multiple attribute decision making with incomplete weight information, Knowledge and Information Systems, 2011;26(2):337-349. doi:10.1007/s10115-009-0276-1.
  • [36] Wei GW, Alsaadi FE, Hayat T, and Alsaedi A. A linear assignment method for multiple criteria decision analysis with hesitant fuzzy sets based on fuzzy measure, International Journal of Fuzzy Systems, 2017;19(3):607-614. doi:10.1007/s40815-016-0177-x.
  • [37] Mousavi MS, and Vahdani B. Cross-docking Location Selection in Distribution Systems: A New Intuitionistic Fuzzy Hierarchical Decision Model. Int. J. Computational Intelligence Systems, 2016;9(1):91-109. URL https://doi.org/10.1080/18756891.2016.1144156.
  • [38] Wei GW, Zhao XF, and Lin R. Some induced aggregating operators with fuzzy number intuitionistic fuzzy information and their applications to group decision making, International Journal of Computational Intelligence Systems, 2010;3(1):84-95. URL https://doi.org/10.1080/18756891.2010.9727679.
  • [39] Wei GW. GRA method for multiple attribute decision making with incomplete weight information in intuitionistic fuzzy setting, Knowledge-based Systems, 2010;23(3):243-247. URL https://doi.org/10.1016/j.knosys.2010.01.003.
  • [40] Lu M, Wei GW, Alsaadi FE, Hayat T, and Alsaedi A. Hesitant Pythagorean Fuzzy Hamacher Aggregation Operators and Their Application to Multiple Attribute Decision Making, Journal of Intelligent and Fuzzy Systems, 2017;33(2):1105-1117. doi:10.3233/JIFS-16554.
  • [41] Wei GW. Maximizing deviation method for multiple attribute decision making in intuitionistic fuzzy setting, Knowledge-Based Systems, 2008;21(8):833-836. URL https://doi.org/10.1016/j.knosys.2008.03.038.
  • [42] Wei GW, Alsaadi FE, Hayat T, and Alsaedi A. Hesitant fuzzy linguistic arithmetic aggregation operators in multiple attribute decision making, Iranian Journal of Fuzzy Systems, 2016;13(4):1-16. doi:10.22111/IJFS.2016.2592.
  • [43] Yager RR. Pythagorean fuzzy subsets, in: Proceeding of The Joint IFSA Wprld Congress and NAFIPS Annual Meeting, Edmonton, Canada, 2013, pp. 57-61.
  • [44] Yager RR. Pythagorean membership grades in multicriteria decision making, IEEE Transactions on Fuzzy Systems, 2014;22:958-965. doi:10.1109/TFUZZ.2013.2278989.
  • [45] Zhang XL, and Xu ZS. Extension of TOPSIS to multiple criteria decision making with Pythagorean fuzzy sets, International Journal of Intelligent Systems, 2014;29(12):1061-1078. doi:10.1002/int.21676.
  • [46] Beliakov G, and James S. Averaging aggregation functions for preferences expressed as Pythagorean membership grades and fuzzy orthopairs. FUZZ-IEEE, 2014, pp. 298-305. doi:10.1109/FUZZIEEE. 2014.6891595.
  • [47] Reformat M, and Yager RR. Suggesting Recommendations Using Pythagorean Fuzzy Sets illustrated Using Netflix Movie Data. IPMU, 2014;(1):546-556. doi:10.1007/978-3-319-08795-5_56.
  • [48] Peng X, and Yang Y. Some results for Pythagorean Fuzzy Sets, Int. J. Intell. Syst., 2015;30(11):1133-1160. doi:10.1002/int.21738.
  • [49] Zeng S, Chen J, and Li X. A Hybrid Method for Pythagorean Fuzzy Multiple-Criteria Decision Making. International Journal of Information Technology and Decision Making, 2016;15(2):403-422. URL https://doi.org/10.1142/S0219622016500012.
  • [50] Ma Z, and Xu Z. Symmetric Pythagorean Fuzzy Weighted Geometric/Averaging Operators and Their Application in Multicriteria Decision-Making Problems. Int. J. Intell. Syst., 2016;31(12):1198-1219. doi:10.1002/int.21823.
  • [51] Garg H. A Novel Correlation Coefficients between Pythagorean Fuzzy Sets and Its Applications to Decision-Making Processes. Int. J. Intell. Syst., 2016;31(12):1234-1252. doi:10.1002/int.21827.
  • [52] Liang D, Xu Z, and Darko AP. Projection Model for Fusing the Information of Pythagorean Fuzzy Multicriteria Group Decision Making Based on Geometric Bonferroni Mean. Int. J. Intell. Syst., 2017;32(9):966-987. doi:10.1002/int.21879.
  • [53] Lu M, Wei GW, Alsaadi FE, Hayat T, and Alsaedi A. Hesitant Pythagorean fuzzy hamacher aggregation operators and their application to multiple attribute decision making. Journal of Intelligent and Fuzzy Systems, 2017;33(2):1105-1117. doi:10.3233/JIFS-16554.
  • [54] Wei GW, Lu M, Alsaadi FE, Hayat T, and Alsaedi A. Pythagorean 2-tuple linguistic aggregation operators in multiple attribute decision making. Journal of Intelligent and Fuzzy Systems, 2017;33(2):1129-1142.doi:10.3233/JIFS-16715.
  • [55] Du Y, Hou F, Zafar W, Yu Q, and and Zhai Y. A Novel Method for Multiattribute Decision Making with Interval-Valued Pythagorean Fuzzy Linguistic Information. Int. J. Intell. Syst., 2017;32(10):1085-1112. doi:10.1002/int.21881.
  • [56] Liu Z, Liu P, Liu W, and Pang J. Pythagorean uncertain linguistic partitioned Bonferroni mean operators and their application in multi-attribute decision making. Journal of Intelligent and Fuzzy Systems, 2017;32(3):2779-2790. doi:10.3233/JIFS-16920.
  • [57] Yager RR. On ordered weighted averaging aggregation operators in multicriteria decision making, IEEE Transactions on Systems Man and Cybernetics, 1988;18:183-190.
  • [58] Yager RR, and Filev DP. Induced ordered weighted averaging operators. IEEE Transactions on Systems, Man, and Cybernetics- Part B, 1999;29:141-150.
  • [59] Chiclana F, Herrera F, and Herrera-Viedma E. The ordered weighted geometric operator: Properties and application. In: Proc of 8th Int Conf on Information Processing and Management of Uncertainty in Knowledge-based Systems, Madrid, 2000, pp. 985-991. URI http://hdl.handle.net/2086/1201.
  • [60] Xu ZS, and Da QL. An overview of operators for aggregating information. International Journal of Intelligent System, 2003;18:953-969. doi:10.1002/int.10127.
  • [61] Ran LG, and Wei GW. Uncertain prioritized operators and their application to multiple attribute group decision making, Technological and Economic Development of Economy, 2015;21(1):118-139. URL https://doi.org/10.3846/20294913.2014.979454.
  • [62] Wei GW. Interval Valued Hesitant Fuzzy Uncertain Linguistic Aggregation Operators in Multiple Attribute Decision Making, International Journal of Machine Learning and Cybernetics, 2016;7(6):1093-1114. doi:10.1007/s13042-015-0433-7.
  • [63] Wei GW, Xu XR, and Deng DX. Interval-valued dual hesitant fuzzy linguistic geometric aggregation operators in multiple attribute decision making, International Journal of Knowledge-based and Intelligent Engineering Systems, 2016;20(4):189-196. doi:10.3233/KES-160337.
  • [64] Lin R, Zhao XF, Wang HJ, and Wei GW. Hesitant fuzzy linguistic aggregation operators and their application to multiple attribute decision making, Journal of Intelligent and Fuzzy Systems, 2014;27(1):49-63. doi:10.3233/IFS-130977.
  • [65] Lin R, Zhao XF, and Wei GW. Models for selecting an ERP system with hesitant fuzzy linguistic information, Journal of Intelligent and Fuzzy Systems, 2014;26(5):2155-2165. doi:10.3233/IFS-130890.
  • [66] Jiang XP, and Wei GW. Some Bonferroni mean operators with 2-tuple linguistic information and their application to multiple attribute decision making, Journal of Intelligent and Fuzzy Systems, 2014;27(5):2153-2162. doi:10.3233/IFS-141180.
  • [67] Wang HJ, Zhao XF, and Wei GW. Dual hesitant fuzzy aggregation operators in multiple attribute decision making, Journal of Intelligent and Fuzzy Systems, 2014;26(5):2281-2290. doi:10.3233/IFS-130901.
  • [68] Zhao XF, Lin R, and Wei GW. Hesitant triangular fuzzy information aggregation based on Einstein operations and their application to multiple attribute decision making, Expert Systems with Applications, 2014;41(4):1086-1094. URL https://doi.org/10.1016/j.eswa.2013.07.104.
  • [69] He Y, Chen H, Zhou L, Han B, Zhao Q, and Liu J. Generalized intuitionistic fuzzy geometric interaction operators and their application to decision making, Expert Systems with Applications, 2014;41(5):2484-2495. URL https://doi.org/10.1016/j.eswa.2013.09.048.
  • [70] He Y, Chen H, Zhau L, Liu J, and Tao Z. Intuitionistic fuzzy geometric interaction averaging operators and their application to multi-criteria decision making, Information Sciences, 2014;259:142-159. URL https://doi.org/10.1016/j.ins.2013.08.018.
  • [71] Garg H. Generalized intuitionistic fuzzy multiplicative interactive geometric operators and their application to multiple criteria decision making. International Journal of Machine Learning and Cybernetics, 2015, pp. 1-18. doi:10.1007/s13042-015-0432-8.
  • [72] Garg H. Some series of intuitionistic fuzzy interactive averaging aggregation operators, Springer Plus, 2016;5:999. doi:10.1186/s40064-016-2591-9.
  • [73] Grabisch M, Murofushi T, & Sugeno M. Fuzzy Measure and Integrals. New York: Physica-Verlag, 2000.
  • [74] Choquet G. Theory of capacities, Ann. Inst. Fourier, 1953;5:131-295.
  • [75] Wei GW, Lin R, Zhao XF, and Wang HJ. An Approach to multiple attribute decision making based on the induced Choquet integral with fuzzy number intuitionistic fuzzy information, Journal of Business Economics and Management, 2014;15(2):277-298. URL https://doi.org/10.3846/16111699.2012.707984.
  • [76] Wei GW, Zhao XF, and Lin R. Some hesitant interval-valued fuzzy aggregation operators and their applications to multiple attribute decision making, Knowledge-Based Systems, 2013;46:43-53. URL https://doi.org/10.1016/j.knosys.2013.03.004.
  • [77] Wei GW, and Zhao XF. Induced Hesitant Interval-Valued Fuzzy Einstein Aggregation Operators and Their Application to Multiple Attribute Decision Making, Journal of Intelligent and Fuzzy Systems, 2013;24(4):789-803. doi:10.3233/IFS-2012-0598.
  • [78] Wei GW, Zhao XF, Lin R, and Wang HJ. Generalized triangular fuzzy correlated averaging operator and their application to multiple attribute decision making, Applied Mathematical Modelling, 2012;36(7):2975-2982. URL https://doi.org/10.1016/j.apm.2011.09.062.
  • [79] Wei GW, Zhao XF, Wang HJ, and Lin R. Hesitant Fuzzy Choquet Integral Aggregation Operators and Their Applications to Multiple Attribute Decision Making, Information: An International Interdisciplinary Journal, 2012;15(2):441-448.
  • [80] Yager RR. Induced aggregation operators, Fuzzy Sets and Systems, 2003;137(1):59-69. URL https://doi.org/10.1016/S0165-0114(02)00432-3.
  • [81] Yager RR. The power average operator, IEEE Transactions on Systems, Man, and Cybernetics-Part A, 2001;31(6);724-731. doi:10.1109/3468.983429.
  • [82] Wei GW. Some linguistic power aggregating operators and their application to multiple attribute group decision making, Journal of Intelligent and Fuzzy Systems, 2013;25(3):695-707. doi: 10.3233/IFS-120676.
  • [83] Wei GW, Zhao XF, Wang HJ, and Lin R. Fuzzy power aggregating operators and their application to multiple attribute group decision making, Technological and Economic Development of Economy, 2013;19(3):377-396.
  • [84] Xu ZS, and Yager RR. Power-Geometric operators and their use in group decision making, IEEE Transactions on Fuzzy Systems, 2010;18(1):94-105. doi:10.1109/TFUZZ.2009.2036907.
  • [85] Yager RR, and Abbasov AM. Pythagorean membeship grades, complex numbers and decision making, International Journal of Intelligent Systems, 2013;28(5):436-452. doi:10.1002/int.21584.
  • [86] Wei GW. Picture 2-tuple linguistic Bonferroni mean operators and their application to multiple attribute decision making, International Journal of Fuzzy System, 2017;19(4):997-1010. doi:10.1007/s40815-016-0266-x.
  • [87] Hu JH, Zhang Y, Chen XH, and Liu YM. Multi-criteria decision making method based on possibility degree of interval type-2 fuzzy number, Knowledge-Based Systems, 2013;43:21-29. URL https://doi.org/10.1016/j.knosys.2012.11.007.
  • [88] Wei GW, Alsaadi FE, Hayat T, and Alsaedi A. Hesitant Bipolar Fuzzy Aggregation Operators in Multiple Attribute Decision Making, Journal of Intelligent and Fuzzy Systems, 2017;33(2):1119-1128.
  • [89] Lu M, Wei GW, Alsaadi FE, Hayat T, and Alsaedi A. Bipolar 2-tuple linguistic aggregation operators in multiple attribute decision making, Journal of Intelligent and Fuzzy Systems, 2017;33(2):1197-1207. doi:10.3233/JIFS-16946.
  • [90] Wei GW. Picture fuzzy aggregation operators and their application to multiple attribute decision making, Journal of Intelligent and Fuzzy Systems, 2017;33(2):713-724. doi:10.3233/JIFS-161798.
  • [91] Wei GW. Picture fuzzy Hamacher aggregation operators and their application to multiple attribute decision making, Fundamenta Informaticae, 2018;157(3):271-320. doi:10.3233/FI-2018-1628.
  • [92] Wei GW, Alsaadi FE, Hayat T, and Alsaedi A. Picture 2-tuple linguistic aggregation operators in multiple attribute decision making, Soft Computing, 2018;22(3):989-1002. doi:10.1007/s00500-016-2403-8.
  • [93] Peng X, Yuan H, Yang Y. Pythagorean Fuzzy Information Measures and Their Applications. Int. J. Intell. Syst., 2017;32(10):991-1029. doi:10.1002/int.21880.
  • [94] Wei GW, and Wang JM. A comparative study of robust efficiency analysis and data envelopment analysis with imprecise data, Expert Systems with Applications, 2017;81:28-38. URL https://doi.org/10.1016/j.eswa.2017.03.043.
  • [95] Jiang C, Han X, Liu GR, and Liu GP. A nonlinear interval number programming method for uncertain optimization problems, European Journal of Operational Research, 2008;188(1):1-13. URL https://doi.org/10.1016/j.ejor.2007.03.031.
  • [96] Wei GW. Picture fuzzy cross-entropy for multiple attribute decision making problems, Journal of Business Economics and Management, 2016;17(4):491-502. URL https://doi.org/10.3846/16111699.2016.1197147.
  • [97] Papadakis SE, and Kaburlasos VG. Piecewise-linear approximation of non-linear models based on probabilistically/possibilistically interpreted intervals’ numbers (INs), Information Sciences, 2010;180(24):5060-5076. URL https://doi.org/10.1016/j.ins.2010.03.023.
  • [98] Ren PJ, Xu ZS, and Gou XJ. Pythagorean fuzzy TODIM approach to multi-criteria decision making, Applied Soft Computing, 2016;42:246-259. URL https://doi.org/10.1016/j.asoc.2015.12.020.
  • [99] Wei GW, and Wei Y. Similarity measures of Pythagorean fuzzy sets based on cosine function and their applications, International Journal of Intelligent Systems, 2018;33(3):634-652. doi:10.1002/int.21965.
  • [100] Wei GW, and Lu M. Pythagorean fuzzy power aggregation operators in multiple attribute decision making, International Journal of Intelligent Systems, 2018;33(1):169-186. doi:10.1002/int.21946.
  • [101] Wei GW. Picture uncertain linguistic Bonferroni mean operators and their application to multiple attribute decision making, Kybernetes, 2017;46(10):1777-1800. URL https://doi.org/10.1108/K-01-2017-0025.
  • [102] Wei GW. Some cosine similarity measures for picture fuzzy sets and their applications to strategic decision making, Informatica, 2017;28(3):547-564.
  • [103] Wei GW, and Lu M. Dual hesitant Pythagorean fuzzy Hamacher aggregation operators in multiple attribute decision making, Archives of Control Sciences, 2017;27(3):365-395. doi:10.1515/acsc-2017-0024.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-0536bf74-cc2a-4ddb-a465-787f4a18b6fd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.