Czasopismo
2015
|
Vol. 35, Fasc. 2
|
285--300
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
We will investigate an almost sure central limit theorem (ASCLT) for sequences of random variables having the form of a ratio of two terms such that the numerator satisfies the ASCLT and the denominator is a positive term which converges almost surely to one. This result leads to the ASCLT for least squares estimators for Ornstein-Uhlenbeck proces driven by fractional Brownian motion.
Czasopismo
Rocznik
Tom
Strony
285--300
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
- Institut de Mathématiques de Bourgogne, Université de Bourgogne, 9 Rue Alain Savary, 21078 Dijon, France, peggy.cenac@u-bourgogne.fr
autor
- National School of Applied Sciences – Marrakesh, Cadi Ayyad University, Av. Abdelkarim Khattabi, Gueliz, Marrakesh, Morocco, k.essebaiy@uca.ma
Bibliografia
- [1] R. Belfadli, K. Es-Sebaiy, and Y. Ouknine, Parameter estimation for fractional Ornstein-Uhlenbeck processes: Non-ergodic case, Frontiers in Science and Engineering. An International Journal Edited by Hassan II Academy of Science and Technology 1 (1) (2011), pp. 1-16.
- [2] B. Bercu, I. Nourdin, and M. Taqqu, Almost sure central limit theorem on the Wiener space, Stochastic Process. Appl. 120 (2010), pp. 1607-1628.
- [3] I. Berkes, Results and problems related to the pointwise central limit theorem, in: Asymptotic Methods in Probability and Statistics: A Volume in Honour of Miklós Csörgő, B. Szyszkowicz (Ed.), Elsevier, Amsterdam 1998, pp. 59-96.
- [4] I. Berkes and E. Csáki, A universal result in almost sure central limit theory, Stochastic Process. Appl. 94 (1) (2001), pp. 105-134.
- [5] G. A. Brosamler, An almost everywhere central limit theorem, Math. Proc. Cambridge Philos. Soc. 104 (3) (1988), pp. 561-574.
- [6] Y. Hu and D. Nualart, Parameter estimation for fractional Ornstein-Uhlenbeck processes, Statist. Probab. Lett. 80 (2010), pp. 1030-1038.
- [7] Y. Hu and J. Song, Parameter estimation for fractional Ornstein-Uhlenbeck processes with discrete observations, in: Malliavin Calculus and Stochastic Analysis: A Festschrift in Honor of David Nualart, F. Viens et al. (Eds.), Springer Proc. Math. Statist. 34 (2013), pp. 427-442.
- [8] I. A. Ibragimov and M. A. Lifshits, On the convergence of generalized moments in almost sure central limit theorem, Statist. Probab. Lett. 40 (4) (1998), pp. 343-351.
- [9] I. A. Ibragimov and M. A. Lifshits, On limit theorems of almost sure type, Theory Probab. Appl. 44 (2) (2000), pp. 254-272.
- [10] M. T. Lacey and W. Philipp, A note on the almost sure central limit theorem, Statist. Probab. Lett. 9 (1990), pp. 201-205.
- [11] P. Lévy, Théorie de l’addition des variables aléatoires. Monographies des probabilites, Gauthier-Villars, Paris 1937.
- [12] R. Michael and J. Pfanzagl, The accuracy of the normal approximation for minimum contrast estimate, Z. Wahrsch. Verw. Gebiete 18 (1971), pp. 37-84.
- [13] I. Nourdin and G. Peccati, Universal Gaussian fluctuations of non-Hermitian matrix ensembles: From weak convergence to almost sure CLTs, ALEA 7 (2010), pp. 341-375.
- [14] D. Nualart, The Malliavin Calculus and Related Topics, Springer, Berlin, second edition, 2006.
- [15] V. Pipiras and M. S. Taqqu, Integration questions related to fractional Brownian motion, Probab. Theory Related Fields 118 (2) (2000), pp. 251-291.
- [16] P. Schatte, On strong versions of the central limit theorem, Math. Nachr. 137 (1988), pp. 249-256.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-04ca662f-34ca-4a71-b377-cf42c56f7b82