Czasopismo
1998
|
Vol. 18, Fasc. 1
|
185--198
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
We first study Lévy measures, Poisson and Gaussian convolution semigroups on commutative hypergroups. Then we present a Lévy-Khintchine type representation of a convolution semigroup (μt)t>0with symmetric Lévy measure λ of the form μt = γt,*e(tγ), t≥0, for some Poisson semigroup (e(tγ)) t>0 and some Gaussian semigroup (γt) t>0.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
185--198
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
- Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Gennany
Bibliografia
- [1] A. Achour et K. Trimèche, Opérateurs de translation généralisée associés á un opérateur différentiel singulier sur un intervalle borné, C. R. Acad. Sci. Paris Sér. A-B 288 No. 7 (1979), A399-A402.
- [2] H. Bauer, Maß- und Integrationstheorie, 2. Auflage, Walter de Gruyter, Berlin-New York 1992.
- [3] C. Berg and G. Forst, Potential Theory on Locally Compact Abelian Groups, Springer, Berlin 1975.
- [4] W. R. Bloom and H. Heуer Harmonie Analysis of Probability Measures on Hypergroups, Walter de Gruyter, Berlin-New York 1995.
- [5] W. R. Bloom and P. Ressel, Positive definite and related functions on hypergroups, Canad. J. Math. 43, No. 2 (1991), pp. 242-254.
- [6] H. Chébli, Opérateurs de translation généralisée et semi-groupes de convolution, in: Théorie du Potentiel et Analyse Harmonique (Éxposés des Journées de la Soc. Math. France, Inst. Recherche Math. Avancée, Strasbourg, 1973), Lecture Notes in Math. 404, Springer, Berlin 1974, pp. 35-59.
- [7] H. Heyer, Convolution semigroups of local type on a commutative hypergroup, Hokkaido Math. J. 18, No. 2 (1989), pp. 321-337.
- [8] R. I. Jewett, Spaces with an abstract convolution of measures, Adv. in Math. 18, No, 1 (1975), pp. 1-101.
- [9] R. Lasser, Convolution semigroups on hypergroups, Pacific J. Math. 127, No. 2 (1987), pp. 353-371.
- [10] W. Linde, Probability in Banach Spaces - Stable and Infinitely Divisible Distributions, Wiley, New York 1986.
- [11] C. Rentzsch, Canonical representations of convolution semigroups on hypergroups, in: Infinite Dimensional Harmonic Analysis, Transactions of a German-Japanese Symposium at the University of Tübingen, 1995, pp. 188-194.
- [12] — and M. Yoit, Homogeneous Markov processes and Gaussian processes on hypergroups, to appear.
- [13] M. Sifi, Central limit theorem and infinitely divisible probabilities associated with partial differential operators, J. Theoret. Probab. 8, No. 3 (1995), pp. 475-499.
- [14] M. Voit, Positive characters on commutative hypergroups and some applications, Math. Z. 198, No. 3 (1988), pp. 405-421.
- [15] — Positive and negative definite functions on the dual space of a commutative hypergroup, Analysis 9, No. 4 (1989), pp. 371-387.
- [16] K. Yosida, Functional Analysis, Springer, Berlin 1965.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-04ae9fc6-c169-4dbd-9532-b79e71b7f901