Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | R. 100, nr 1 | 16--23
Tytuł artykułu

An analysis of the ampacity and capital costs for underground high voltage power cable construction methods

Treść / Zawartość
Warianty tytułu
PL
Analiza obciążalności prądowej i kosztów inwestycyjnych metod budowy podziemnych kabli elektroenergetycznych wysokiego napięcia
Języki publikacji
EN
Abstrakty
EN
This study aimed to evaluate the ampacity and costs of different high voltage underground cable methods (cylindrical duct bank vs. square tunnel). The standards of Metropolitan Electricity Authority (MEA) of Thailand innovative approach to reduce road impact were used. Simulations for 115 kV cables showed that the maximum ampacity for cylindrical duct bank method was 523 A (flooding), and 509 A (non-flooding) while that of the square tunnel method was 445 A (flooding), and 405 A (non-flooding). Costs analysis were $573,446 per circuit for the cylindrical duct bank method and $404,363 per circuit for the square tunnel method.
PL
Celem tego badania była ocena obciążalności prądowej i kosztów różnych metod podziemnych kabli wysokiego napięcia (cylindryczny zespół kanałów vs. tunel kwadratowy). Wykorzystano standardy Metropolitan Electricity Authority (MEA) Tajlandii, innowacyjne podejście do zmniejszania wpływu na drogę. Symulacje dla kabli 115 kV wykazały, że maksymalna obciążalność prądowa dla metody cylindrycznej wiązki przewodów wynosiła 523 A (zalanie) i 509 A (bez zalania), natomiast dla metody tunelu kwadratowego wyniosła 445 A (zalanie) i 405 A (niezalanie). powódź). Analiza kosztów wyniosła 573 446 USD na obwód w przypadku metody z kanałem cylindrycznym i 404 363 USD na obwód w przypadku metody z tunelem kwadratowym.
Wydawca

Rocznik
Strony
16--23
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Department of Electrical Engineering, Rajamangala University of Technology Thanyaburi (RMUTT) 12110 Thailand, somchai_k@mail.rmutt.ac.th
  • Department of Electrical Engineering, Rajamangala University of Technology Thanyaburi (RMUTT) 12110 Thailand, boonyang.p@en.rmutt.ac.th
  • Department of Electrical Engineering, Rajamangala University of Technology Isan (RMUTI) 3000 Thailand, yuttana.ko@rmuti.ac.th
Bibliografia
  • [1] Bascom, Williams, and Kwilinski, "Technical considerations for applying trenchless technology methods to underground power cables," in 2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D), 2016: IEEE, pp. 1-5.
  • [2] Rajakrom, "Undergrounding the Power Distribution Network in Luang Prabang World Heritage," GMSARN International Journal vol. 5, pp. 37-44, 2011.
  • [3] Att Phayomhom, "Analysis of Electric Field and Magnetic Field from Overhead Subtransmission Lines Affecting Occupational Health and Safety in MEA’s Power System," GMSARN International Journal, vol. 10, pp. 25-32, 2016.
  • [4] Jian, Huan, Xiao, and Xu, "Ampacity analysis of buried cables based on electromagnetic-thermal finite element method," in 2018 2nd International Conference on Smart Grid and Smart Cities (ICSGSC), 2018: IEEE, pp. 73-79.
  • [5] Bossio, Lengwiler, Heimbach, Kälin, Fauci, and Casura, "Sensitivity analysis of cable trench modelling with concrete duct bank and multiple material layers for the current rating of 150kv cables," in CIRED 2021-The 26th International Conference and Exhibition on Electricity Distribution, 2021, vol. 2021: IET, pp. 332-336.
  • [6] Pradipta and Hudaya, "Effects of depth burial on current carrying capacity of XLPE 86/150 (170) kV underground cable," in 2018 International Conference on Information and Communications Technology (ICOIACT), 2018: IEEE, pp. 506- 510.
  • [7] Earle, Rusty, and Rezutko, "Novel installation of a 138kV pipe-type cable system under water using horizontal directional drilling," in T&D Conference and Exposition, 2014 IEEE PES., 2014.
  • [8] Zhu et al., "Thermal Effect of Different Laying Modes on Cross-Linked Polyethylene (XLPE) Insulation and a New Estimation on Cable Ampacity," Energies, vol. 12, no. 15, 2019, doi: 10.3390/en12152994.
  • [9] Colef and de Leon, "Improvement of the Standard Ampacity Calculations for Power Cables Installed in Trefoil Formations in Ventilated Tunnels," IEEE Transactions on Power Delivery, vol. 37, no. 1, pp. 627-637, 2022, doi: 10.1109/tpwrd.2021.3068111.
  • [10] Shang, Xu, and Xue, "Application of guided boring trenchless technology on pipeline cross railway," in 2011 International Conference on Multimedia Technology, 2011: IEEE, pp. 975- 978.
  • [11] Hoerauf, "Ampacity Application Considerations for Underground Cables," IEEE Transactions on Industry Applications, vol. 52, no. 6, pp. 4638-4645, 2016, doi: 10.1109/tia.2016.2600656.
  • [12] Charerndee, Chatthaworn, Khunkitti, Kruesubthaworn, Siritaratiwat, and Surawanitkun, "Effect of concrete duct bank dimension with thermal properties of concrete on sensitivity of underground power cable ampacity," in 2018 18th International Symposium on Communications and Information Technologies (ISCIT), 2018: IEEE, pp. 484-489.
  • [13] Fu, Si, Quan, and Yang, "Numerical Study of Heat Transfer in Trefoil Buried Cable with Fluidized Thermal Backfill and Laying Parameter Optimization," Mathematical Problems in Engineering, vol. 2019, pp. 1-13, 2019, doi: 10.1155/2019/4741871.
  • [14] Klimenta, Perović, Klimenta, Jevtić, Milovanović, and Krstić, "Modelling the thermal effect of solar radiation on the ampacity of a low voltage underground cable," International Journal of Thermal Sciences, vol. 134, pp. 507-516, 2018, doi: 10.1016/j.ijthermalsci.2018.08.012.
  • [15] Perka, "Przegląd metod modelowania przepływu ciepła w przewodach elektrycznych," PrzeglĄd Elektrotechniczny, vol. 1, no. 7, pp. 92-95, 2021, doi: 10.15199/48.2021.07.18.
  • [16] MaŚNicki, "Odprowadzanie ciepła z kabla w podziemnych liniach elektroenergetycznych," PrzeglĄd Elektrotechniczny, vol. 1, no. 5, pp. 76-79, 2021, doi: 10.15199/48.2021.05.12.
  • [17] Anders and Brakelmann, "Rating of Underground Power Cables With Boundary Temperature Restrictions," IEEE Transactions on Power Delivery, vol. 33, no. 4, pp. 1895-1902, 2018, doi: 10.1109/TPWRD.2017.2771367.
  • [18] Gouda, Dein, and Amer, "Effect of the Formation of the Dry Zone Around Underground Power Cables on Their Ratings," IEEE Transactions on Power Delivery, vol. 26, no. 2, pp. 972- 978, 2011, doi: 10.1109/TPWRD.2010.2060369.
  • [19] Diaz-Aguiló, León, Jazebi, and Terracciano, "Ladder-Type Soil Model for Dynamic Thermal Rating of Underground Power Cables," IEEE Power and Energy Technology Systems Journal, vol. 1, pp. 21-30, 2014, doi: 10.1109/JPETS.2014.2365017.
  • [20] Brakelmann and Anders, "Ampacity Calculations of Underground Power Cables With End Effects," IEEE Transactions on Power Delivery, vol. 38, no. 3, pp. 1968-1976, 2023, doi: 10.1109/tpwrd.2022.3229585.
  • [21] Kropotin, "Mathematical model of XLPE insulated cable power line with underground installation," PrzeglĄd Elektrotechniczny, vol. 1, no. 6, pp. 79-82, 2019, doi: 10.15199/48.2019.06.14.
  • [22] Czapp, "Effect of soil moisture on current-carrying capacity of low-voltage power cables," PrzeglĄd Elektrotechniczny, vol. 1, no. 6, pp. 156-161, 2019, doi: 10.15199/48.2019.06.29.
  • [23] Anders, "Wpáyw skrzyĪowania linii kablowych wysokiego napiĊcia 110 kV na ich dáugotrwaáą obciąĪalnoĞü prądową," PrzeglĄd Elektrotechniczny, vol. 1, no. 5, pp. 121-125, 2019, doi: 10.15199/48.2019.05.29.
  • [24] Bustamante et al., "Thermal behaviour of medium-voltage underground cables under high-load operating conditions," Applied Thermal Engineering, vol. 156, pp. 444-452, 2019, doi: 10.1016/j.applthermaleng.2019.04.083.
  • [25] Cheng, "Emergency Capacity Prediction of Direct Buried Cable under Rainfall Condition," in 2019 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia), 2019: IEEE, pp. 176-180.
  • [26] Charerndee, Chatthaworn, Khunkitti, Kruesubthaworn, Siritaratiwat, and Surawanitkun, "Investment Cost Analysis with Structural Design of Concrete Duct Bank Power Cables," in IOP Conference Series: Materials Science and Engineering, 2020, vol. 897, no. 1: IOP Publishing, p. 012007.
  • [27] Klimenta, Tasić, and Jevtić, "The use of hydronic asphalt pavements as an alternative method of eliminating hot spots of underground power cables," Applied Thermal Engineering, vol. 168, 2020, doi: 10.1016/j.applthermaleng.2019.114818.
  • [28] Klimenta, Jevtić, Andriukaitis, and Mijailović, "Increasing the transmission performance of a conventional 110 kV cable line by combining a hydronic concrete pavement system with photovoltaic floor tiles," Electrical Engineering, vol. 103, no. 3, pp. 1401-1415, 2021, doi: 10.1007/s00202-020-01167-4.
  • [29] COMSOL. "Inductive Heating of a Copper Cylinder." (accessed 15.08.2023, 2023).
  • [30] Metropolitan Electricity Authority (MEA) of Thailand. (2020). Power Cable Ampacities in Conduit with Pipe Jacking (Shielded Extruded Insulation CU Conductor, Rated 69 _ 115 kV) (UG-.pdf>.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-047b31fa-d32a-40e7-9151-73c0febaceb3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.