Warianty tytułu
Języki publikacji
Abstrakty
White blood cells (WBCs) are essential for immune and inflammatory responses, and their precise classification is crucial for diagnosing and managing diseases. Although convolutional neural networks (CNNs) are effective for image classification, their high computational demands necessitate feature selection to enhance efficiency and interpretability. This study utilizes transfer learning with EfficientNet-B0 and DenseNet201 to extract features, along with a Bayesian-based feature selection method with a novel optimization mechanism to improve convergence. The reduced feature set is classified using soft voting across multiple classifiers. Tests on benchmark datasets achieved over 99% accuracy with fewer features, surpassing or matching existing methods.
Rocznik
Tom
Strony
579--595
Opis fizyczny
Bibliogr. 42 poz., rys., tab., wykr.
Twórcy
autor
- Department of Electrical and Computer Engineering, COMSATS University Islamabad, Wah Campus, Wah Cantt, 47040, Pakistan
autor
- Department of Information Systems, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia, t.akram@psau.edu.sa
autor
- College of Computer Science, King Khalid University, King Abdullah Road, 61421, Abha, Saudi Arabia
autor
- College of Computer Science, King Khalid University, King Abdullah Road, 61421, Abha, Saudi Arabia
autor
- Department of Computer Science, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
autor
- Department of Computer Science, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
Bibliografia
- [1] Abdullah, E. and Turan, M.K. (2019). Classifying white blood cells using machine learning algorithms, International Journal of Engineering Research and Development 11(1): 141-152.
- [2] Ahmad, R., Awais, M., Kausar, N. and Akram, T. (2023a). White blood cells classification using entropy-controlled deep features optimization, Diagnostics 13(3): 352-369.
- [3] Ahmad, R., Awais, M., Kausar, N., Tariq, U., Cha, J.-H. and Balili, J. (2023b). Leukocytes classification for leukemia detection using quantum inspired deep feature selection, Cancers 15(9): 2507-2524.
- [4] Almezhghwi, K. and Serte, S. (2020). Improved classification of white blood cells with the generative adversarial network and deep convolutional neural network, Computational Intelligence and Neuroscience 2020(01): 6490479.
- [5] Alruwaili, M. (2021). An intelligent medical imaging approach for various blood structure classifications, Complexity 2021(01): 5573300.
- [6] Bartlett, M.S. (1937). Properties of sufficiency and statistical tests, Proceedings of the Royal Society of London A: Mathematical and Physical Sciences 160(901): 268-282.
- [7] Farag, M.R. and Alagawany, M. (2018). Erythrocytes as a biological model for screening of xenobiotics toxicity, Chemico-Biological Interactions 279: 73-83.
- [8] Gupta, D., Agrawal, U., Arora, J. and Khanna, A. (2020). Bat-inspired algorithm for feature selection and white blood cell classification, in X. Yang (Ed), Nature-Inspired Computation and Swarm Intelligence, Academic Press, Cambridge, pp. 179-197.
- [9] He, B., Lu, Q., Lang, J., Yu, H., Peng, C., Bing, P., Li, S., Zhou, Q., Liang, Y. and Tian, G. (2020). A new method for CTC images recognition based on machine learning, Frontiers in Bioengineering and Biotechnology 8: 897-907.
- [10] He, K., Zhang, X., Ren, S. and Sun, J. (2016). Deep residual learning for image recognition, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVR), Las Vegas, USA, pp. 770-778.
- [11] Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M. and Adam, H. (2017). MobileNets: Efficient convolutional neural networks for mobile vision applications, arXiv: 1704.04861.
- [12] Huang, H., Wu, N., Liang, Y., Peng, X. and Shu, J. (2022). Slnl: A novel method for gene selection and phenotype classification, International Journal of Intelligent Systems 37(9): 6283-6304.
- [13] ImageNet (2024). ImageNet project image database, http://www.image-net.org.
- [14] Iqbal, M., Naeem, M., Ahmed, A., Awais, M., Anpalagan, A. and Ahmad, A. (2018). Swarm intelligence based resource management for cooperative cognitive radio network in smart hospitals, Wireless Personal Communications 98: 571-592.
- [15] Jung, C., Abuhamad, M., Mohaisen, D., Han, K. and Nyang, D. (2022). WBC image classification and generative models based on convolutional neural network, BMC Medical Imaging 22(1): 1-16.
- [16] Kandukuri, U.R., Prakash, A.J., Patro, K.K., Neelapu, B.C., Tadeusiewicz, R. and Pławiak, P. (2023). Constant Q-transform-based deep learning architecture for detection of obstructive sleep apnea, International Journal of Applied Mathematics and Computer Science 33(3): 493-506, DOI: 10.34768/amcs-2023-0036.
- [17] Ko, B., Gim, J. and Nam, J. (2011). Cell image classification based on ensemble features and random forest, Electronics Letters 47(11): 638-639.
- [18] Kouzehkanan, Z.M., Saghari, S., Tavakoli, S., Rostami, P., Abaszadeh, M., Mirzadeh, F., Satlsar, E.S., Gheidishahran, M., Gorgi, F., Mohammadi, S. and Hosseini, R. (2022). A large dataset of white blood cells containing cell locations and types, along with segmented nuclei and cytoplasm, Scientific Reports 12(1): 1123-1137.
- [19] Liu, J., Lin, Y., Li, Y., Weng, W. and Wu, S. (2018). Online multi-label streaming feature selection based on neighborhood rough set, Pattern Recognition 84: 273-287.
- [20] Lu, S., Liu, S., Hou, P., Yang, B., Liu,M., Yin, L. and Zheng,W. (2023). Soft tissue feature tracking based on deep matching network, Computer Modeling in Engineering and Sciences 136(1): 363-379.
- [21] Malik, S., Akram, T., Awais, M., Khan, M.A., Hadjouni, M., Elmannai, H., Alasiry, A., Marzougui, M. and Tariq, U. (2023). An improved skin lesion boundary estimation for enhanced-intensity images using hybrid metaheuristics, Diagnostics 13(7): 1285.
- [22] Mathur, A., Tripathi, A.S. and Kuse,M. (2013). Scalable system for classification of white blood cells from Leishman stained blood stain images, Journal of Pathology Informatics 4(2): 15-20.
- [23] Redmon, J. and Farhadi, A. (2018). YOLOv3: An incremental improvement, arXiv: 1804.02767.
- [24] Rezatofighi, S.H. and Soltanian-Zadeh, H. (2011). Automatic recognition of five types of white blood cells in peripheral blood, Computerized Medical Imaging and Graphics 35(4): 333-343.
- [25] Sajjad, M., Khan, S., Jan, Z., Muhammad, K., Moon, H., Kwak, J.T., Rho, S., Baik, S.W. and Mehmood, I. (2017). Leukocytes classification and segmentation in microscopic blood smear: A resource-aware healthcare service in smart cities, IEEE Access 5: 3475-3489.
- [26] Sakaguchi, K., Akimoto, K., Takaira, M., Tanaka, R.-i., Shimizu, T. and Umezu, S. (2022). Cell-based microfluidic device utilizing cell sheet technology, Cyborg and Bionic Systems 2022: 9758187.
- [27] Sarrafzadeh, O., Rabbani, H., Talebi, A. and Banaem, H.U. (2014). Selection of the best features for leukocytes classification in blood smear microscopic images, Medical Imaging 2014: Digital Pathology, San Diego, USA, pp. 159-166.
- [28] Shahzad, A., Raza, M., Shah, J.H., Sharif, M. and Nayak, R.S. (2022). Categorizing white blood cells by utilizing deep features of proposed 4B-additionNet-based CNN network with ant colony optimization, Complex & Intelligent Systems 8: 3143-3159.
- [29] Shapiro, S.S. and Wilk, M.B. (1965). An analysis of variance test for normality (complete samples), Biometrika 52(3-4): 591-611.
- [30] Sharma, S., Gupta, S., Gupta, D., Juneja, S., Gupta, P., Dhiman, G. and Kautish, S. (2022). Deep learning model for the automatic classification of white blood cells, Computational Intelligence and Neuroscience 2022: 7384131.
- [31] Su, M.-C., Cheng, C.-Y. and Wang, P.-C. (2014). A neural-network-based approach to white blood cell classification, The Scientific World Journal 2014: 796371.
- [32] Sun, T., Lv, J., Zhao, X., Li, W., Zhang, Z. and Nie, L. (2023). In vivo liver function reserve assessments in alcoholic liver disease by scalable photoacoustic imaging, Photoacoustics 34: 100569.
- [33] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V. and Rabinovich, A. (2015). Going deeper with convolutions, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, USA, pp. 1-9.
- [34] Tan, M. and Le, Q. (2019). EfficientNet: Rethinking model scaling for convolutional neural networks, Proceedings of the 36th International Conference on Machine Learning, Long Beach, USA, pp. 6105-6114.
- [35] Tavakoli, S., Ghaffari, A., Kouzehkanan, Z.M. and Hosseini, R. (2021). New segmentation and feature extraction algorithm for classification of white blood cells in peripheral smear images, Scientific Reports 11(1): 19428.
- [36] Turner, J.R. and Thayer, J. (2001). Introduction to Analysis of Variance: Design, Analysis & Interpretation: Design, Analyis & Interpretation, Sage, Thousand Oakes.
- [37] Weatherspoon, D. (2024). What to know about white blood cells, Medical News Today, https://www.medicalnewstoday.com/articles/327446.
- [38] Yao, X., Sun, K., Bu, X., Zhao, C. and Jin, Y. (2021). Classification of white blood cells using weighted optimized deformable convolutional neural networks, Artificial Cells, Nanomedicine, and Biotechnology 49(1): 147-155.
- [39] Yu, Y., Wan, M., Qian, J., Miao, D., Zhang, Z. and Zhao, P. (2024). Feature selection for multi-label learning based on variable-degree multi-granulation decision-theoretic rough sets, International Journal of Approximate Reasoning 169: 109181.
- [40] Zhang, C., Ge, H., Zhang, S., Liu, D., Jiang, Z., Lan, C., Li, L., Feng, H. and Hu, R. (2021). Hematoma evacuation via image-guided para-corticospinal tract approach in patients with spontaneous intracerebral hemorrhage, Neurology and Therapy 10: 1001-1013.
- [41] Zhang, R., Tan, J., Cao, Z., Xu, L., Liu, Y., Si, L. and Sun, F. (2024). Part-aware correlation networks for few-shot learning, IEEE Transactions on Multimedia 26: 9527-9538.
- [42] Zhu, C. (2024). Computational intelligence-based classification system for the diagnosis of memory impairment in psychoactive substance users, Journal of Cloud Computing 13(1): 119.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-046ddc4e-acab-401e-99b3-5e2150ca72b4