Czasopismo
2013
|
Vol. 41, No. 1
|
97--126
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Teoria wiabilności : narzędzie matematyki stosowanej do ujawniania stanów zrównoważonego rozwoju
Języki publikacji
Abstrakty
Sustainability is an issue of paramount importance, as scientists and politicians seek to understand what it means, practically and conceptually, to be sustainable. This paper’s aim is to introduce viability theory, a relatively young branch of mathematics which provides a conceptual framework that is very well suited to such problems. Viability theory can be used to answer important questions about the sustainability of systems, including those studied in macroeconomics, and can be used to determine sustainable policies for their management. The principal analytical tool of viability theory is the viability kernel which describes the set of all state-space points in a constrained system starting from which it is possible to remain within the system’s constraints indefinitely. Although, in some circumstances, kernel determination can be performed analytically, most practical results in viability theory rely on graphical approximations of viability kernels, which for nonlinear and high-dimensional problems can only be approached numerically. This paper provides an outline of the core concepts of viability theory and an overview of the numerical approaches available for computing approximate viability kernels. VIKAASA, a specialised software application developed by the authors and designed to compute such approximate viability kernels is presented along-side examples of viability theory in action in the spheres of bio-economics and macroeconomics.
Zrównoważony rozwój jest terminem często używanym lecz naukowcy i politycy nie są zgodni ani co do jego znaczenia, ani jak praktycznie i teoretycznie zapewnić taki rozwój. Niniejsza praca ma na celu wprowadzenie czytelnika do teorii wiabilności30, stosunkowo młodej gałęzi matematyki ciągłej, której narzędzia nadają się do opisu problemów zrównoważonego rozwoju. W szczególności, teoria wiabilności może być wykorzystana do określania strategii zrównoważonego rozwoju systemów ekonomicznych, w tym makroekonomicznych. Głównym narzędziem analitycznym teorii wiabilności jest jądro wiabilności, którym jest zbiór wszystkich punktów przestrzeni stanu, z jakich mogą się dokonać ewolucje systemu, które nigdy nie przekroczą zadanych z góry ograniczeń. Chociaż w pewnych okolicznościach opis jądra może być otrzymany analitycznie, większość praktycznych rezultatów w teorii wiabilności uzyskuje się przez analizę graficznych przybliżeń jąder wiabilności, które w przypadku nieliniowych i wysokowymiarowych problemów mogą być uzyskane jedynie drogą obliczeniową. Niniejsza praca przedstawia podstawowe pojęcia teorii wiabilności oraz przegląd dostępnych metod numerycznych do obliczania przybliżeń jąder. VIKAASA, specjalistyczne oprogramowanie opracowane przez autorów, umożliwia otrzymywanie takich przybliżeń. W pracy, użycie VIKAASY jest zilustrowane przykładami z zakresu bio- i makroekonomii.
Czasopismo
Rocznik
Tom
Strony
97--126
Opis fizyczny
Bibliogr. 47 poz., rys.
Twórcy
autor
- Victoria University of Wellington PO Box 600, Wellington 6140, New Zealand, J.Krawczyk@vuw.ac.nz
autor
- Victoria University of Wellington PO Box 600, Wellington 6140, New Zealand, asppsa@gmail.com
Bibliografia
- [1] J.-P. Aubin, Viability theory, Systems & Control: Foundations & Applications, Birkhäuser, Boston, 1991, doi: 10.1007/978-0-8176-4910-4, Zbl 0755.93003.
- [2] , Dynamic Economic Theory – A Viability Approach. Studies in Economic Theory, Berlin: Springer, vol. 5 xxviii, 510 p. 1997. Zbl 0876.90032
- [3] , Viability kernels and capture basins of sets under differential inclusions. SIAM J. Control Optimization,, 40(3):853–881, 2001. Zbl 1025.49016, doi: 10.1137/S036301290036968X
- [4] J.-P. Aubin and A. Cellina, Differential inclusions, Grundlehren der math. Wiss., no. 264, Springer-Verlag, 1984, doi: 10.1007/978-3-642-69512-4.
- [5] J.-P. Aubin, A.M. Bayen, and P. Saint-Pierre, Viability theory: New directions, 2 ed., Springer, Berlin, 2011, doi: 10.1007/978-3-642-16684-6.
- [6] J.-P. Aubin and H. Frankowska. Set-Valued Analysis. Systems and Control: Foundations and Applications, Birkhäuser, Boston, vol. 2, xix, 461 p., 1990. Zbl 0713.49021
- [7] N. Batini and A. Haldane. Forward-looking rules for monetary policy. In J. B. Taylor, editor, Monetary policy rules, pages 157–202. National Bureau of Economic Research, 1999. doi:10.3386/w6543
- [8] , Monetary policy rules and inflation forecasts, Bank of England Quarterly Bulletin, Bank of England, 1999, URL: http://www.bankofengland.co.uk/archive/Documents/historicpubs/qb/1999/qb990105.pdf [cited 2013-08-01].
- [9] C. Béné, L. Doyen, and D. Gabay. A viability analysis for a bio-economic model. Ecological Economics, 36:385–396, 2001. doi: 10.1016/S0921-8009(00)00261-5
- [10] P. Cardaliaguet, M. Quincampoix, and P. Saint-Pierre. Set-valued numerical analysis for optimal control and differential games. Martino Bardi, T.E.S. Raghavan and T. Parthasarathy(ed.), In: Stochastic and differential games. Theory and numerical methods. Dedicated to Prof. A. I. Subbotin, Annals of the International Society of Dynamic Games, Boston: Birkhäuser, vol. 4, 177–247, 1999. Zbl 0982.91014
- [11] S.R. Carpenter and L.H. Gunderson. Coping with collapse: Ecological and social dynamics in ecosystem management. BioScience, 51(6):451–457, 2001. doi: 10.1641/0006-3568(2001)051[0451:cwceas]2.0.co;2
- [12] L. Chapel and G. Deffuant. Svm viability controller active learning: Application to bike control. In The 2007 IEEE Symposium on Approximate Dynamic Programming and Reinforcement Learning (ADPRL 2007), 2007. doi: 10.1109/ADPRL.2007.368188
- [13] M. De Lara and L. Doyen. Sustainable Management of Natural Resources: Mathematical Models and Methods. Springer Verlag, 2008. doi: 10.1007/978-3-540-79074-7
- [14] G. Deffuant, L. Chape, and S. Martin. Approximating viability kernels with support vector machines. IEEE Transactions on Automatic Control, 52(2):933–936, May 2007. doi:10.1109/tac.2007.895881
- [15] L. Doyen and J.-Ch. Péreau. Sustainable coalitions in the commons. Mathematical Social Sciences, 63:57–64, 2012. doi: 10.1016/j.mathsocsci.2011.10.006
- [16] L. Doyen, O. Thébaud, C. Béné, V. Martinet, S. Gourguet, M. Bertignac, S. Fifas, and F. Blanchard. A stochastic viability approach to ecosystem-based fisheries management. Ecological Economics, 75:32–42, 2012. doi: 10.1016/j.ecolecon.2012.01.005
- [17] H. Frankowska and M. Quincampoix. Vialbility kernels of differential inclusions with constraints: Algorithms and applications. Technical Report WP-90-64, International Institute for Applied Systems Analysis, October 1990. webarchive.iiasa.ac.at/
- [18] V. Gaitsgory and M. Quincampoix. Linear programming approach to deterministic infinite horizon optimal control problems with discounting. SIAM J. Control Optim., 48:2480–2512, 2009. MR 2556353, Zbl 1201.49040, doi: 10.1137/070696209
- [19] J. Gali. Monetary Policy, Inflation and the Business Cycle: An Introduction to the New Keynsian Framework. Princeton University Press, Princeton and Oxford, 2008.
- [20] H. Hotelling. The economics of exhaustible resources. Journal of Political Economy, 39 (2):137–175, 1931. doi: 10.1086/254195
- [21] Kaviar Homepage, Kaviar homepage, 2012, URL: http://http://www.kaviar.prd.fr/.
- [22] K. Kim, J. B. Krawczyk, and R. Sethi. Viable solutions to an open economy monetary policy problem. In Fifteenth International Conference on Economics & Finance – Sydney, Australia, 2009.
- [23] J. B. Krawczyk and K. L. Judd. Viable economic states in a dynamic model of taxation. In ‘Conference Maker’ [editorialexpress.com], Prague, Czech Republic, June 2012. 18th International Conference on Computing in Economics and Finance. URL: https://editorialexpress.com/cgi-bin/conference/download.cgi?db_name=CEF2012&paper_id=116 [cited 2013-08-01].
- [24] J. B. Krawczyk and K. Kim. A viability theory analysis of a macroeconomic dynamic game. In 11th ISDG Symposium on Dynamic Games and Applications, Ventana Canyon Resort, Tucson, Arizona, December 18-21, 2004 . International Society of Dynamic Games, Symposium Proceedings.
- [25] , A viability solution to a small open-economy monetarty policy problem. In 12th International Conference on Computing in Economics and Finance, 2006.
- [26] , “Satisficing” solutions to a monetary policy problem: a viability theory approach. Macroeconomic Dynamics, 13(1):46–80, February 2009. doi: 10.1017/s1365100508070466
- [27] , Viable stabilising non-Taylor monetary policies for an open economy. Computational Economics, XX:xx–xx, 2013. doi: 10.1007/s10614-013-9360-4
- [28] J. B. Krawczyk and A. Pharo. Viability Kernel Approximation, Analysis and Simulation Application – VIKAASA Manual. SEF Working Paper 13/2011, Victoria University of Wellington, 2011. URL: http://hdl.handle.net/10063/1878
- [29] J. B. Krawczyk and A. Pharo. Viability Kernel Approximation, Analysis and Simulation Application – VIKAASA Code, 2012. http://code.google.com/p/vikaasa/. URL: http://code.google.com/p/vikaasa/ [cited 2013-08-01]
- [30] J. B. Krawczyk, A. Pharo, and M. Simpson. Approximations to viability kernels for sustainable macroeconomic policies. Technical report, VUW SEF Working paper: 01/2011, 2011. URL: http://hdl.handle.net/10063/1531
- [31] J. B. Krawczyk and O. S. Serea. A viability theory approach to a two-stage optimal control problem. Joint Meeting of the AMS - NZMS, 2007, 2007.
- [32] J. B. Krawczyk and O.-S. Serea. When can it be not optimal to adopt a new technology? A viability theory solution to a two-stage optimal control problem of new technology adoption. Optim. Control Appl. Meth., vol. 34(2):127–144, 2013. published online: December 2011. MR 3039072, doi: 10.1002/oca.1030
- [33] T. Lawson. Uncertainty and economic analysis. The Economic Journal, 95(380):909–927, December 1985. doi: 10.2307/2233256
- [34] V. Martinet, O. Thébaud, and L. Doyen. Defining viable recovery paths toward sustainable fisheries. Ecological Economics, 64(2):411–422, 2007. doi: 10.1016/j.ecolecon.2007.02.036.
- [35] V. Martinet, O. Thébaud, and A. Rapaport. Hare or tortoise? trade-offs in recovering sustainable bioeconomic systems. Environmental Modeling and Assessment, 15(6):503–517, 2010. doi: 10.1007/s10666-010-9226-2
- [36] D. Pujal and P. Saint-Pierre. Capture basin algorithm for evaluating and managing complex financial instruments. In 12th International Conference on Computing in Economics and Finance, Cyprus, June 2006. conference maker.
- [37] M. Quincampoix and P. Saint-Pierre. An algorithm for viability kernels in hölderian case: Approximation by discrete dynamical systems. Journal of Mathematical Systems, Estimation and Control, 5(1):1–13, 1995. Zbl 0831.34016
- [38] M. Quincampoix and V. M. Veliov. Viability with a target: Theory and applications. Applications of Mathematical Engineering, Cheshankov B. and Todorov M., eds. , Heron Press, Sofia, pp., 47:47–58, 1998.
- [39] G.D. Rudebusch and L.E.O. Svensson. Policy rules for inflation targeting. In J.B. Taylor, editor, Monetary Policy Rules. University of Chicago Press, 1999. doi: 10.3386/w6512
- [40] P. Saint-Pierre. Approximation of the viability kernel. Applied Mathematics & Optimization, 29:187–209, 1994. doi: 10.1007/bf01204182, Zbl 0790.65081
- [41] M. B. Schaefer. Some aspects of the dynamics of populations. Bull. Int. Am. Trop. Tuna Comm., 1:26–56, 1954. URL: http://www.iattc.org/PDFFiles2/Bulletins/ IATTC-Bulletin-Vol-1-No-2.pdf [cited 2013-08-05]
- [42] H. A. Simon. A behavioral model of rational choice. Quarterly Journal of Economics, 69:99–118, 1955. doi: 10.2307/1884852
- [43] S. Sinclair. Viability analysis of sustainable bycatch fisheries. Master’s thesis, Victoria University of Wellington School of Economics and Finance, 2013.
- [44] L. Svensson. Open-economy inflation targeting. Journal of International Economics, 50:155–83, 2000. doi: 10.1016/s0022-1996(98)00078-6
- [45] J. B. Taylor and J. C. Williams. Simple and robust rules for monetary policy. Working Paper 2010-10, Federal Reserve Bank of San Francisco, april 2010. URL: http://www.frbsf.org/publications/economics/papers/2010/wp10-10bk.pdf
- [46] V. M. Veliov. Sufficient conditions for viability under imperfect measurement. Set-Valued Analysis,, 1(3):305–317, 1993. doi: 10.1007/bf01027640, Zbl 0802.49029
- [47] C. Walsh. Monetary Theory and Policy. MIT Press, Boston, 2003.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-0438de9c-52d6-42b2-83e5-c4d61d0e8472