Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 23, no. 1 | art. no. e1, 2023
Tytuł artykułu

Modelling the high‑temperature deformation characteristics of S355 steel using artificial neural networks

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, artificial neural networks were used to predict the plastic flow behaviour of S355 steel in the process of high-temperature deformation. The aim of the studies was to develop a model of changes in stress as a function of strain, strain rate and temperature, necessary to build an advanced numerical model of the soft-reduction process. The high-temperature characteristics of the tested steel were determined with a Gleeble 3800 thermo-mechanical simulator. Tests were carried out in the temperature range of 400-1450 °C for two strain rates, i.e. 0.05 and 1 s-1. The test results were next used to develop and verify a rheological model based on artificial neural networks (ANNs). The conducted studies show that the selected models offer high accuracy in predicting the high-temperature flow behaviour of S355 steel and can be successfully used in numerical modelling of the soft-reduction process.
Wydawca

Rocznik
Strony
art. no. e1, 2023
Opis fizyczny
Bibliogr. 13 poz., rys., tab., wykr.
Twórcy
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Al. Adama Mickiewicza 30, 30‑059 Krakow, Poland
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Al. Adama Mickiewicza 30, 30‑059 Krakow, Poland, mrzyglod@agh.edu.pl
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Al. Adama Mickiewicza 30, 30‑059 Krakow, Poland
Bibliografia
  • 1. Hojny M. Modeling steel deformation in the semi-solid state: advanced structured materials. Switzerland: Springer; 2018.
  • 2. Zhang L, Shen H, Rong Y. Numerical simulation on solidification and thermal stress of continuous casting billet in mold based on meshless methods. Mat Sci Eng. 2007;466(1-2):71-8.
  • 3. Kalaki A, Ketabchi M. Predicting the rheological behaviour of AISI D2 semi-solid steel by plastic instability approach. Am J Mat Eng Tech. 2013;1(3):41-5.
  • 4. Hojny M, Głowacki M, Bała P, Bednarczyk W, Zalecki W. Multiscale model of heating-remelting-cooling in the Gleeble 3800 thermo-mechanical simulator system. Arch Metall Mater. 2019;64(1):401-12.
  • 5. Lin Y, Chen M, Zhang J. Prediction of 42CrMo steel flow stress at high temperature and strain rate. Mech Res Commun. 2008;35:142-50.
  • 6. Reddy NS, Leeb YH, Parka CH, Lee CS. Prediction of flow stress in Ti-6Al-4V alloy with an equiaxed microstructure by artificial neural networks. Mater Sci Eng A. 2008;492:276-82.
  • 7. Cabrera JM, Omar AA, Jonas JJ, Prado JM. Modeling the flow behaviour of a medium carbon microalloyed steel under hot working conditions. Metall Mater Trans A. 1997;28:2233.
  • 8. Saravanan L, Velmurugan K, Venkatachalapathy VSK. Hot deformation behaviour and ANN modeling of an aluminium hybrid nanocomposite. Mater Today Proc. 2021;47:6594-9.
  • 9. Sani SA, Ebrahimi GR, Vafaeenezhad H, Kiani-Rashid AR. Modeling of hot deformation behaviour and prediction of flow stress in a magnesium alloy using constitutive equation and artificial neural network (ANN) model. J Magn Alloys. 2018;6:134-44.
  • 10. Lin YC, Huang J, Li H-B, Chen D-D. Phase transformation and constitutive models of a hot compressed TC18 titanium alloy in the α+β regime. Vacuum. 2018;157:83-91. https://doi.org/10.1016/j.vacuum.2018.08.020.
  • 11. Yonghua D, Lishi M, Huarong Q, Runyue L, Ping L. Developed constitutive models, processing maps and microstructural evolution of Pb-Mg-10Al-0.5B alloy. Mater Charact. 2017;129:353-66.
  • 12. Lin YC, Liang YJ, Chen MS, et al. A comparative study on phenomenon and deep belief network models for hot deformation behavior of an Al-Zn-Mg-Cu alloy. Appl Phys A. 2017;123:68. https://doi.org/10.1007/s00339-016-0683-6).
  • 13. Tadeusiewicz R. Neural networks in mining sciences-general overview and some representative examples. Arch Min Sci. 2015;60(4):971-84.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-03ed31e5-8081-4618-837d-a096c777d3b6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.