Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 121, nr 1 | 25--32
Tytuł artykułu

Versatile semiconductor quantum dots: synthesis, bioconjugation strategies and application

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The present work aimed to synthesize organic and inorganic quantum dots (QDs) and discuss their bioconjugation strategies. Design/methodology/approach: We have prepared 3 different QDs, organic (Carbon [CQDs]) and inorganic (Cadmium Sulphide [CdS] and Zinc Mercury Selenide [ZnHgSe]) quantum dots (QDs) and bioconjugation through in-situ and ex-situ route. These QDs have been characterized through UV-Vis spectroscopy and photoluminescence (PL) emission spectra. Their surface functional groups have been identified through Fourier-transform infrared (FTIR) spectroscopy. The bioconjugated quantum dots were tested through PL emission shift, Agarose electrophoresis, and Bradford assay technique. Findings: Successful synthesized QDs, and their bioconjugation has been confirmed through the previously listed characterization techniques. There are distinct differences in their emission peak, FTIR spectroscopy, and Bradford assay, which confirms their successful bioconjugation. Research limitations/implications: These bioconjugated QDs are difficult to filter from their unconjugated counterpart. Bioconjugation steps are extremely crucial. Practical implications: These QDs could be utilized for highly effective biolabelling and bioimaging in-vivo as well as in-vitro applications. Originality/value: The synthesis has been majorly modified, and the bioconjugation has been prepared in a novel method. There is limited reported work with this much description of the differences in conjugated and unconjugated QDs.
Wydawca

Rocznik
Strony
25--32
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
autor
  • Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida, UP, India
autor
  • Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, UP, India
autor
  • Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, UP, India, sbose1@amity.edu
autor
  • Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida, UP, India, rnayak@amity.edu
Bibliografia
  • 1. U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, T. Nann, Quantum dots versus organic dyes as fluorescent labels, Nature Methods 5 (2008) 763-775. DOI: https://doi.org/10.1038/nmeth.1248
  • 2. K. Gulia, A. James, S. Pandey, K. Dev, D. Kumar, A. Sourirajan, Bio-Inspired Smart Nanoparticles in Enhanced Cancer Theranostics and Targeted Drug Delivery, Journal of Functional Biomaterials 13/4 (2022) 207. DOI: https://doi.org/10.3390/jfb13040207
  • 3. A. Kumar, M. Sharipov, A. Turaev, S. Azizov, I. Azizov, E. Makhado, A. Rahdar, D. Kumar, S. Pandey, Polymer-Based Hybrid Nanoarchitectures for Cancer Therapy Applications, Polymers 14/15 (2022) 3027. DOI: https://doi.org/10.3390/polym14153027
  • 4. R. Arshad, M.H. Kiani, A. Rahdar, S. Sargazi, M. Barani, S. Shojaei, M. Bilal, D. Kumar, S. Pandey, Nano-Based Theranostic Platforms for Breast Cancer: A Review of Latest Advancements, Bioengineering 9/7 (2022) 320. DOI: https://doi.org/10.3390/bioengineering9070320
  • 5. A. Mohan, Fabrication of a Fiber Scanning Multiphoton Microendoscope, MSc Thesis, Northeastern University, Boston, 2019.
  • 6. A.M. Smith, X. Gao, S. Nie, Quantum dot nanocrystals for in vivo molecular and cellular imaging, Photo-chemistry and Photobiology 80/3 (2004) 377-385. DOI: https://doi.org/10.1111/j.1751-1097.2004.tb00102.x
  • 7. D. Andrews, R.H. Lipson, T. Nann (eds), Comprehensive nanoscience and nanotechnology, Academic Press, Cambridge, MA, 2019.
  • 8. S.K. Vashist, R. Tewari, R.P. Bajpai, L.M. Bharadwaj, R. Raiteri, Review of quantum dot technologies for cancer detection and treatment, AZojono – Journal of Nanotechnology Online 2 (2006) 1-14. DOI: https://doi.org/10.2240/azojono0113
  • 9. F.A. Esteve-Turrillas, A. Abad-Fuentes, Applications of quantum dots as probes in immunosensing of small-sized analytes, Biosensors and Bioelectronics 41 (2013) 12-29. DOI: https://doi.org/10.1016/j.bios.2012.09.025
  • 10. N.V. Beloglazova, E.S. Speranskaya, S. De Saeger, Z. Hens, S. Abé, I.Yu. Goryacheva, Quantum dot based rapid tests for zearalenone detection, Analytical and Bioanalytical Chemistry 403/10 (2012) 3013-3024. DOI: https://doi.org/10.1007/s00216-012-5981-z
  • 11. C.B. Murray, C.R. Kagan, M. Bawendi, Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies, Annual Review of Materials Science 30/1 (2000) 545-610. DOI: https://doi.org/10.1146/annurev.matsci.30.1.545
  • 12. A. Foubert, N.V. Beloglazova, A. Rajkovic, B. Sas, A. Madder, I.Yu. Goryacheva, S. De Saeger, Bioconjugation of quantum dots: Review and impact on future application, TrAC Trends in Analytical Chemistry 83/B (2016) 31-48. DOI: https://doi.org/10.1016/j.trac.2016.07.008
  • 13. Y. Li, B. Shen, L. Liu, H. Xu, X. Zhong, Stable water-soluble quantum dots capped by poly (ethylene glycol) modified dithiocarbamate, Colloids and Surfaces A: Physicochemical and Engineering Aspects 410 (2012) 144-152. DOI: https://doi.org/10.1016/j.colsurfa.2012.06.034
  • 14. B.C. Mei, K. Susumu, I.L. Medintz, J.B. Delehanty, T.J. Mountziaris, H. Mattoussi, Modular poly (ethylene glycol) ligands for biocompatible semiconductor and gold nanocrystals with extended pH and ionic stability, Journal of Materials Chemistry 18/41 (2008) 4949-4958. DOI: https://doi.org/10.1039/B810488C
  • 15. T. Pellegrino, L. Manna, S. Kudera, T. Liedl, D. Koktysh, A.L. Rogach, S. Keller, J. Rädler, G. Natile, W.J. Parak, Hydrophobic nanocrystals coated with an amphiphilic polymer shell: a general route to water soluble nanocrystals, Nano Letters 4/4 (2004) 703-707. DOI: https://doi.org/10.1021/nl035172j
  • 16. W.T. Mason (ed), Fluorescent and luminescent probes for biological activity: a practical guide to technology for quantitative real-time analysis, Academic Press, Cambridge, MA, 1999.
  • 17. J. Li, D. Wu, Z. Miao, Y. Zhang, Preparation of quantum dot bioconjugates and their applications in bio-imaging, Current Pharmaceutical Biotechnology 11/6 (2010) 662-671. DOI: https://doi.org/10.2174/138920110792246582
  • 18. J. Qian, Y. Wang, X. Gao, Q. Zhan, Z. Xu, S. He, Carboxyl-functionalized and bio-conjugated silica-coated quantum dots as targeting probes for cell imaging, Journal of Nanoscience and Nanotechnology 10/3 (2010) 1668-1675. DOI: https://doi.org/10.1166/jnn.2010.2043
  • 19. F. Jia, S. Lv, S. Xu, Bio-conjugation of graphene quantum dots for targeting imaging, RSC Advances 7/84 (2017) 53532-53536. DOI: https://doi.org/10.1039/C7RA11963A
  • 20. C.-C. Fu, C.-T. Hsieh, R.-S. Juang, J.-W. Yang, S. Gu, Y.A. Gandomi, Highly efficient carbon quantum dot suspensions and membranes for sensitive/selective detection and adsorption/recovery of mercury ions from aqueous solutions, Journal of the Taiwan Institute of Chemical Engineers 100 (2019) 127-136. DOI: https://doi.org/10.1016/j.jtice.2019.04.012
  • 21. X. He, L. Gao, N. Ma, One-step instant synthesis of protein-conjugated quantum dots at room temperature, Scientific Reports 3/1 (2013) 2825. DOI: https://doi.org/10.1038/srep02825
  • 22. K. Shivaji, S. Mani, P. Ponmurugan, C.S. De Castro, M.L. Davies, M.G. Balasubramanian, S. Pitchaimuthu, Green-synthesis-derived CdS quantum dots using tea leaf extract: antimicrobial, bioimaging, and therapeutic applications in lung cancer cells, ACS Applied Nano Materials 1/4 (2018) 1683-1693. DOI: https://doi.org/10.1021/acsanm.8b00147
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-03e532c9-6f59-4600-aab2-e43b801f3b51
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.