Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | Vol. 55, nr 1 | 315--327
Tytuł artykułu

Local linear approach: conditional density estimate for functional and censored data

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let Y be a random real response, which is subject to right censoring by another random variable C . In this paper, we study the nonparametric local linear estimation of the conditional density of a scalar response variable and when the covariable takes values in a semi-metric space. Our main aim is to prove under some regularity conditions both the pointwise and the uniform almost-sure consistencies with convergence rates of the conditional density estimator related by this estimation procedure.
Wydawca

Rocznik
Strony
315--327
Opis fizyczny
Bibliogr. 12 poz.
Twórcy
  • Department of Biology, University of Mascara, Laboratory of Stochastic Models, Statistics and Applications, University Tahar Moulay of Saida, Mascara, 29000, Algeria, benkhaled08@yahoo.fr
  • University Tahar Moulay of Saida, Laboratory of Stochastic Models, Statistic and Applications, Saida, 20000, Algeria, fethi.madani@univ-saida.dz
Bibliografia
  • [1] J. Demongeot, A. Laksaci, F. Madani, and M. Rachdi, Functional data: local linear estimation of the conditional density and its application, Statistics 47 (2013), no. 1, 26–44, DOI: https://doi.org/10.1080/02331888.2011.568117.
  • [2] M. Rachdi, A. Laksaci, J. Demongeot, A. Abdali, and F. Madani, Theoretical and practical aspects of the quadratic error in the local linear estimation of the conditional density for functional data, Comput. Statist. Data Anal. 73 (2014), 53–68, DOI: https://doi.org/10.1016/j.csda.2013.11.011.
  • [3] X. Xiong, P. Zhou, and C. Ailian, Asymptotic normality of the local linear estimation of the conditional density for functional time series data, Comm. Statist. Theory Methods 47 (2018), no. 14, 3418–3440, DOI: https://doi.org/10.1080/03610926.2017.1359292.
  • [4] F. Messaci, N. Nemouchi, I. Ouassou, and M. Rachdi, Local polynomial modeling of the conditional quantile for functional data, Stat. Methods Appl. 24 (2015), no. 4, 597–622, DOI: https://doi.org/10.1007/s10260-015-0296-9.
  • [5] A. Benkhaled, F. Madani, and S. Khardani, Strong consistency of local linear estimation of a conditional density function under random censorship, Arab. J. Math. 9 (2020), no. 3, 513–529, DOI: https://doi.org/10.1007/s40065-020-00282-1.
  • [6] A. Benkhaled, F. Madani, and S. Khardani, Asymptotic normality of the local linear estimation of the conditional density for functional dependent and censored data, South African Statist. J. 54 (2020), no. 2, 131–151, DOI: https://doi.org/10.37920/sasj.2020.54.2.1.
  • [7] J. Barrientos-Marin, F. Ferraty, and P. Vieu, Locally modeled regression and functional data, J. Nonparametr. Stat. 22 (2009), no. 3, 617–632, DOI: https://doi.org/10.1080/10485250903089930.
  • [8] J. Barrientos-Marin, Some Practical Problems of Recent Nonparametric Procedures: Testing, Estimation, and Application, PhD thesis (in French), Paul Sabatier’s University, Toulouse, 2007.
  • [9] P. Deheuvels and H. Einmahl, Functional limit laws for the increments of Kaplan-Meier product limit processes and applications, Ann. Probab. 28 (2000), no. 3, 1301–1335, DOI: https://doi.org/10.1214/aop/1019160336.
  • [10] P. Sarda and P. Vieu, Kernel Regression, Wiley, New York, 2000, pp. 43–70.
  • [11] F. Ferraty and P. Vieu, Nonparametric Functional Data Analysis. Theory and Practice, Springer Series in Statistics, New York, 2006.
  • [12] F. Ferraty, A. Laksaci, A. Tadj, and P. Vieu, Rate of uniform consistency for nonparametric estimates with functional variables, Inference 140 (2010), no. 2, 335–352, DOI: https://doi.org/10.1016/j.jspi.2009.07.019.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-03c6a365-8664-40db-b009-6d1e76afd89f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.