Czasopismo
2020
|
Vol. 68, no. 2
|
377--388
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Onshore seismic exploration analyzes seismic wave propagation in elastic media, which includes the conversion between P- and S-waves. The development of multi-wave and multi-component seismic exploration methods provides data that enable onshore elastic wave full-waveform inversion. However, most data sets of onshore exploration are single component obtained from the particle-motion response from the vertical geophone. When the aiming area has a low-velocity zone, the ray path of refected wave that propagates to the detector is nearly perpendicular to the ground surface, so that we call it P-wave data. In this paper, we focus on multi-parameter waveform inversion using P-wave refection seismic data. Although only P-wave data are received, it still contains the converted P-wave information, and the converted P-wave energy gradually increases as the ofset increases. As seismic acquisition technology, observation systems and science develop, the folds and acquisition ofset increase signifcantly, and the seismic data contain important converted P-wave information. In this paper, the frst-order elastic velocity–stress equation is decomposed to obtain the scalar-P-wave equation from which the S-wave velocity is included frstly. Then we present the theoretical framework for onshore multi-parameter full-waveform inversion using P-wave data. In order to explore the inversion potential of the P-wave data (extracting the S-wave velocity from the converted P-wave information) and accuracy and stability of the P- and S-wave velocity inverted by our method, we carry out numerical tests via diferent inversion strategies, by using the P-wave data regarded as containing converted P-wave information, and get successful results.
Czasopismo
Rocznik
Tom
Strony
377--388
Opis fizyczny
Bibliogr. 37 poz.
Twórcy
autor
- School of Geosciences, China University of Petroleum (East China), Qingdao, China, 986132055@qq.com
- Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
autor
- School of Geosciences, China University of Petroleum (East China), Qingdao, China, guochenwu@upc.edu.cn
- Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
Bibliografia
- 1. Barnes C, Charara M (2009) The domain of applicability of acoustic full-waveform inversion for marine seismic data. Geophysics 74:WCC91–WCC103
- 2. Brossier R, Operto S, Virieux J (2009) Seismic imaging of complex onshore structures by 2D elastic frequency-domain full-waveform inversion. Geophysics 74:WCC105–WCC118
- 3. Crase E, Pica A, Noble M, Mchdonald J, Tarantola A (1990) Robust elastic nonlinear waveform inversion: application to real data. Geophysics 55:527–538
- 4. Dellinger J, Etgen J (1990) Wave-field separation in two-dimensional anisotropic media. Geophysics 1990(55):914–919
- 5. Fletcher R, Reeves CM (1964) Function minimization by conjugate gradients. Comput J 7:149–154
- 6. Gaiser J, Moldoveanu N, Macbeth C et al (2001) Multicomponent technology: the players, problems, applications, and trends: Summary of the workshop sessions. Lead Edge 20(9):974–977
- 7. Gardner G, Gardner L, Gregory A (1974) Formation velocity and density-the diagnostics basics for stratigraphic traps. Geophysics 39:770–780
- 8. Hobro JWD, Chapman CH, Robertsson JOA (2014) A method for correcting acoustic finite-difference amplitudes for elastic effects. Geophysics 79:T243–T255
- 9. Jeong W, Lee HY, Min DJ (2012) Full waveform inversion strategy for density in the frequency domain. Geophys J Int 188:1221–1242
- 10. Köhn D, Nil DD, Kurzmann A, Bohlen T (2012) On the influence of model parametrization in elastic full waveform tomography. Geophys J Int 191:325–345
- 11. Lailly P (1983) The seismic inverse problem as a sequence of before stack migrations: conference on inverse scattering, theory and application. Society for Industrial and Applied Mathematics, Philadelphia, pp 206–220
- 12. Ma D, Zhu G (2003) Numerical modeling of P wave and S wave separation in elastic wavefield. Oil Geophys Prospect 38:482–486 (in Chinese)
- 13. Mora P (1987) Nonlinear two-dimensional elastic inversion of multioffset seismic data. Geophysics 52:1211–1228
- 14. Mora P (1988) Elastic wave-field inversion of reflection and transmission data. Geophysics 53:750–759
- 15. Operto S, Virieux J, Dessa JX et al (2006) Crustal seismic imaging from multifold ocean bottom seismometer data by frequency domain full waveform tomography: application to the eastern Nankai trough. J Geophys Res Solid Earth 111:B9
- 16. Pratt RG (1999) Seismic waveform inversion in the frequency domain, part 1: theory and verification in a physical scale model. Geophysics 64:888–901
- 17. Pratt RG, Shipp RM (1999) Seismic waveform inversion in the frequency domain, part 2: fault delineation in sediments using cross-hole data. Geophysics 64:902–914
- 18. Pratt RG, Worthington MH (1990) Inverse theory applied to multi-source cross-hole tomography. Part 1: acoustic wave-equation method. Geophys Prospect 38:287–310
- 19. Pratt RG, Shin C, Hick GJ (1998) Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion. Geophys J Int 133:341–362
- 20. Raknes EB, Arntsen B, Weibull W (2015) Three-dimensional elastic full waveform inversion using seismic data from the Sleipner area. Geophys J Int 22:1877–1894
- 21. Ravaut C, Operto S, Improta L et al (2004) Multiscale imaging of complex structures from multifold wide-aperture seismic data by frequency-domain full-waveform tomography: application to a thrust belt. Geophys J Int 159:1032–1056
- 22. Ren Z, Liu Y (2016) A hierarchical elastic full-waveform inversion scheme based on wavefield separation and the multistep-length approach. Geophysics 2016(81):R99–R123
- 23. Sears TJ, Singh SC, Barton PJ (2008) Elastic full waveform inversion of multi-component OBC seismic data. Geophys Prospect 56:843–862
- 24. Shipp RM, Singh SC (2002) Two-dimensional full wavefield inversion of wide-aperture marine seismic streamer data. Geophys J Int 151:325–344
- 25. Simmons J, Backus M (2003) An introduction-multicomponent. Lead Edge 22:1227–1262
- 26. Sirgue L, Pratt R (2004) Efficient waveform inversion and imaging: a strategy for selecting temporal frequencies. Geophysics 69:231–248
- 27. Sirgue L, Barkved OI, Dellinger J, Etgen J, Albertin U, Kommedal JH (2010) Full waveform inversion: the next leap forward in imaging at Valhall. First Break 28:65–70
- 28. Sun R, McMechan GA, Lee CS et al (2007) Prestack scalar reverse-time depth migration of 3D elastic seismic data. Geophysics 71:S199–S207
- 29. Tang C, McMechan GA (2017) Multidirectional-vector-based elastic reverse time migration and angle-domain common-image gathers with approximate wavefield decomposition of P-and S-waves. Geophysics 83:S57–S79
- 30. Tarantola A (1984) Inversion of seismic reflection data in the acoustic approximation. Geophysics 49:1259–1266
- 31. Tarantola A (1986) A strategy for nonlinear elastic inversion of seismic reflection data. Geophysics 51:1893–1903
- 32. Tatham RH, Stoffa PL (1976) Vp/Vs-a potential hydrocarbon indicator. Geophysics 41:837–849
- 33. Vigh D, Jiao K, Watts D, Sun D (2014) Elastic full-waveform inversion application using multicomponent measurements of seismic data collection. Geophysics 79:R63–R77
- 34. Virieux J, Operto S (2009) An overview of full-waveform inversion in exploration geophysics. Geophysics 74:WCC1–WCC26
- 35. Wu RS, Aki K (1985) Scattering characteristics of elastic waves by an elastic heterogeneity. Geophysics 50:582–595
- 36. Xiao X, Leaney WS (2010) Local vertical seismic profiling (VSP) elastic reverse-time migration and migration resolution: salt-flank imaging with transmitted P-to-S waves. Geophysics 75:S35–S49
- 37. Zhang Q, McMechan GA (2010) 2D and 3D elastic wavefield vector decomposition in the wavenumber domain for VTI media. Geophysics 75:D13–D26
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-03936fc3-72d1-4d9f-ba46-ffb0fcbafb22