Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | Vol. 81, nr 1 | 35--40
Tytuł artykułu

Alginate based hydrogel for tissue regeneration: optimization, antibacterial activity and mechanical properties

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: In this work our aim was to reveal the relationship between sodium alginate concentration and crosslinking level, also the ratio of release of the antibacterial additives: silver nanoparticles and metronidazole. Moreover, we examine obtained hydrogel as a potential dressing material for regenerative medicine. Design/methodology/approach: In the research specimens of hydrogels were tested to define their mechanical and physicochemical properties like antibacterial activity against gramnegative Escherichia coli and gram-positive Staphylococcus aureus, viscosity and conductivity. Findings: The concentration of alginate and presence of antibacterial additives influence on the crosslinking level. Mechanical properties of hydrogels are similar to human skin. Only hydrogels with addition of metronidazole and AgNP inhibits bacteria growth after 18 h. In case of gram-negative Escherichia coli both of the aseptic additives inhibits bacteria growth, but sodium alginate hydrogel with silver nanoparticles gives better results in tests with grampositive Staphylococcus aureus . Research limitations/implications: The presence of metronidazole in hydrogel, especially its incorporation and binding with mannuronic and guluronic acid residues must be clarified in more advanced research. Practical implications: Obtained results shows that sodium alginate hydrogels with 0.1mg/ml of alginate, due to its properties are proper as a dressing material. Based on the results, and more advanced tests with metronidazole, we can consider dressing design. Originality/value: Unique value of this work is that we completed the gap in knowledge about the relation of crosslinking level and mechanical properties with are crucial to proper tissue healing and addition of popular aseptic agents.
Wydawca

Rocznik
Strony
35--40
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
  • Department of Biomedical Engineering, Faculty of Mechanical Engineering, University of Zielona Gora, ul. Szafrana 4, 65-516 Zielona Góra, Poland, a.kaczmarek@ibem.uz.zgora.pl
  • Department of Biomedical Engineering, Faculty of Mechanical Engineering, University of Zielona Gora, ul. Szafrana 4, 65-516 Zielona Góra, Poland
autor
  • Department of Microbiology and Genetics, Faculty of Biological Science, University of Zielona Gora, ul. Monte Cassino 21B, 65-516 Zielona Góra, Poland
Bibliografia
  • [1] Y. Yoshida, K. Kawahara, K. Inamoto, S. Mitsumune, S. Ichikawa, A. Kuzuya, Y. Ohya, Biodegradable Injectable Polymer Systems Exhibiting TemperatureResponsive Irreversible Sol-to-Gel Transition by Covalent Bond Formation, ACS Biomaterials Science and Engineering 3/9 (2017) 56-67.
  • [2] W. Lee, J. Son, S-S. Yoo, J-K. Park, Facile and biocompatible fabrication of chemically sol-gel transitional hydrogel free-standing microarchitectures, Biomacromolecules 12 (2011) 14-18.
  • [3] T. Dikova, D. Dzhendov, I. Katrena, D. Pavlova, Accuracy of polymeric dental bridges manufactured by stereolythography, Archives of Materials Science and Engineering 78/1 (2016) 29-36.
  • [4] W. Li, M. Huo, A.S. Chaudhuri, C. Yang, D. Cao, Z. Wu, X. Qi, Self-assembled polyelectrolyte complexes films as efficient compression coating layers for controlled-releasing tablets, Journal of Materials Science: Materials in Medicine 28 (2017) 67-79.
  • [5] M. Tavakol, E. Vasheghani-Farahani, T. DolatabadiFarahani, S. Hashemi-Najafabadi, Sulfasalazine release from alginate-N.O-carboxymethyl chitozzan gel beads coated by chitosan, Carbohydrohydrate Polymers 77 (2009) 326-330.
  • [6] S.K. Motwani, S. Chopra, S. Talegaonkar, K. Kohli, F.J. Ahmad, R.K. Khar, Chitosan-sodium alginate nanoparticles as submicroscopic reservoirs for ocular delivery: formulation, optimisation and in vitro characterisation, European Journal of Pharmaceutics and Biopharmaceutics 68 (2008) 513-525.
  • [7] Y. Luo, Q. Wang, Recent development of chitosanbased polyeletrolyte complexes with natural polysaccharides for drug delivery, International Journal of Biological Macromolecules 64 (2014) 353-367.
  • [8] S.N. Pawar, K.J. Edgar, Alginate derivatization: a review of chemistry, properties and applications, Biomaterials 33 (2012) 3279-3305.
  • [9] Y.A. Morch, I. Donati, B.L. Strand, G. Skjåk-Bræk, Effect of Ca2+, Ba2+ and Sr2+ on alginate microbeads, Biomacromolecule 7 (2006) 1471-1480.
  • [10] K. Guzik, J. Mazurek, E. Krasicka-Cydzik, Antimicrobial impact of nanoparticles of silver obtained from natural raw materials, Biomedical Engineering 18 (2012) 139-143 (in Polish).
  • [11] G. Chladek, J. Żmudzki, P. Malara, L.A. Dobrzański, C. Krawczyk, Influence of introducing silver nanoparticles on tribological characteristics of soft liner, Archives of Material Science and Engineering 62/1 (2013) 5-14.
  • [12] L.A. Dobrzański, M. Pawlyta, A. Hudecki, Conceptual study on a New generation of the high-innovative advanced poros and composite nanostructural materials with nanofibers, Journal of Achievements in Materials and Manufacturing Engineering 49/2 (2011) 550-565.
  • [13] M.A. Surmeneva, A.A. Sharanova, S. Chermousova, D. Prymak, M. Epple, R.A. Surmenev, Incorporation of silver nanoparticles into magnetron-spottered calcium phosphate layers on titanium as an antibacterial coating, Colloids and Surfaces B: Biointerfaces 156 (2017) 104-113.
  • [14] D.A.B. Salem, A. El-shazly, N. Nabih, Y. ElBayoumy, S. Saleh, Evaluation of the efficacy of oral ivermectin in comparison with ivermecinemetronidazole combined therapy in the treatment of ocular and skin lesion of Demodex folliculorum, International Journal of Infectious Diseases 17 (2013) e343-e347.
  • [15] R. Fekrazad, K. Karamifar, A. Bahador, Comparison of antibacterial effect of photodynamic therapy Rusing indocyanine and 2% metronidazole and 2% chlorhexidine gel on Porphyromonas gingivalis (an in-vitro study), Photodiagnosis and Photodynamic Therapy 15 (2016) 28-33.
  • [16] M.C. Straccia, G. Gomez d’Ayala, I. Romano, A. Oliva, P. Laurienzo, Alginate Hydrogels Coated with Chitosan for Wound Dressing, Marine Drugs 13 (2015) 2890-2908.
  • [17] J. Kang, V.K.R. Tangadanchu, L. Gopala, W.-W. Gao, Y. Cheng, H.-B. Liu, R.-X. Geng, S. Li, C.-H. Zhou, Novel potentially antibacterial naphthalimide-derived metronidazoles: design, synthesis, biological evaluation and supramolecular interactions with DNA, human serum, albumin and topoisomerase II, Chinese Chemical Letters 28/7 (2017) 1369-1374, https://doi.org/10.1016/j.cclet.2017.04.002.
  • [18] F.M. Hendriks, Mechanical behaviour of human skin in vivo, Nat.Lab. Unclassified Report Koninklijke Philips Electronics N.V. 2001/820, 2001.
  • [19] C. Edwards, R. Marks, Evaluation of biomechanical properties of human skin, Clinics in Dermatology 13 (1995) 375-380.
  • [20] A.A. Barros, A. Rita, C. Duarte, R.A. Pires, B. Sampaio-Marques, P. Ludovico, E. Lima, J.F. Mano, R.L. Reis, Bioresorbable ureteral stents from natural origin polymers, Journal of Biomedical Materials Research B 103 (2015) 608-617.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-036a99a7-1590-4618-9e09-68f79bf7d28f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.