Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | Vol. 49 | 47--77
Tytuł artykułu

Hilbert algebras with a necessity modal operator

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We introduce the variety of Hilbert algebras with a modal operator , called H-algebras. The variety of H-algebras is the algebraic counterpart of the {→;]}fragment of the intuitionitic modal logic IntK. We will study the theory of representation and we will give a topological duality for the variety of H-algebras. We are going to use these results to prove that the basic implicative modal logic IntK→ and some axiomatic extensions are canonical. We shall also to determine the simple and subdirectly irreducible algebras in some subvarieties of H-algebras.
Wydawca

Rocznik
Tom
Strony
47--77
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
  • CONICET and Departamento de Matemáticas, Universidad Nacional del Centro, Pinto 399; 7000 Tandil, Argentina, scelani@exa.unicen.edu.ar
  • Universidad Nacional del Comahue, Facultad de Economía y Administración, Departamento de Matemática Buenos Aires 1400; 8300 Neuquén, Argentina, dmontang@gmail.com
Bibliografia
  • [1] G. Bezhanisvili, Varieties of monadic Heyting algebras I, Studia Logica 61 (1998),367-402.
  • [2] G. Bierman and V. de Paiva, On an Intuitionistic Modal, Logic Studia Logica 65 (2000), 383-416.
  • [3] P. Blackburn, M. de Rijke and Y. Venema, Modal Logic, Cambridge Tracts in Theoretical Computer Science 53. Cambridge University Press (2001).
  • [4] D. Busneag, A note of deductive system of a Hilbert algebras, Kobe Journal of Mathematics 2 (1985), 29-35.
  • [5] S. A. Celani, Modal Tarski algebras, Reports on Math. Logic 39 (2005), 113-126.
  • [6] S. A. Celani, A note on homomorphism of Hilbert algebras, Int. Journal of Math. and Mathematical Sc. 29:1 (2002), 55-61.
  • [7] S. A. Celani and L. M. Cabrer, Duality for finite Hilbert algebras, Discrete Mathematics 305 (2005), 74-99.
  • [8] S. A. Celani, L. M. Cabrer and D. Montangie, Topological Duality for Hilbert algebras, Central European Journal of Mathematics 7:3 (2009), 463-478.
  • [9] S. A. Celani and D. Montangie, Hilbert Algebras with supremum, Algebra Universalis 67:3 (2012), 237-255.
  • [10] S. A. Celani, Simple and subdirectly irreducibles bounded distributive lattices with unary operators, International Journal of Mathematics and Mathematical Sciences, Article ID 21835, 20 pages, (2006). doi:10.1155/IJMMS/2006/21835.
  • [11] A. Diego, Sur les algébres de Hilbert, Colléction de Logique Mathématique, serie A 21 (1966), Gouthier-Villars, Paris.
  • [12] M. Fairtlough and M. Mendler, Propositional Lax Logic, Information and Computation 137:1 (1997), 1-33.
  • [13] G. Fischer Servi, On Modal Logics with an Intuitionistic Base, Studia Logica 36:2 (1977), 141-149.
  • [14] G. Fischer Servi, Axiomatizations for some Intuitionistic Modal Logics, Rendiconti del Seminario Matematico dell' Universit#a Politecnica di Torino 42:3 (1984), 179-194.
  • [15] D. Gluschankof and M. Tilli, Maximal deductive systems and injective objects in the category of Hilbert algebras, Z. Math. Logik Grundlagen Math 34:3 (1988), 213-220.
  • [16] R. Goldblatt, Grothendieck Topology as Geometric Modality, Zeitschrift fuer Mathematische Logik und Grundlagen der Mathematik 27 (1981), 495-529.
  • [17] P. M. Idziak, Filters and Congruences relations in BCK-algebras, Math. Japonica 29:6 (1984), 975-980.
  • [18] I. Chajda, R. Halas, J. Kühr, Semilattice Structures, Heldermann Verlag, Research and Exposition in Mathematics, Vol. 30 (2007).
  • [19] K. Dosen, Models for Stronger Normal Intuitionistic Modal Logics, Studia Logica 44:1 (1983), 39-70.
  • [20] M. Bozic and K. Dosen, Models for normal intuitionistic modal logics, Studia Logica 44 (1984), 217-245.
  • [21] R. Kirk, A Complete Semantics for Implicational Logics, Zeitschr. f. math. Logik und Grundlagen d. Math. Bd. 27 (1981), 381-383.
  • [22] Y. Hasimoto, Heyting algebras with operators, Mathematical Logic Quarterly 47:2 (2001), 187-196.
  • [23] A. N. Prior, Two additions to positive implication, Journal of Symbolic Logic 29 (1964), 31-32.
  • [24] A. Monteiro, Sur les algébres de Heyting symétriques, Portugaliae Mathematica 39 (1980), fasc. 1-4.
  • [25] G. Sambin and V. Vaccaro, Topology and duality in modal logic, Annals of Pure and Applied Logic 37 (1988), 249-296.
  • [26] V. H. Sotirov, Modal Theories with Intuitionistic Logic, In Mathematical Logic, Proceedings of the Conference on Mathematical Logic, Dedicated to the Memory of A. A. Markov (1903-1979), Sofia, September 22-23, 1980 (1984), pp. 139-171.
  • [27] A. Urquhart, Implicational formulas in intuitionistic logic, J. Symb. Logic 89 (1974), 661-664.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-03592953-eafd-44a2-b7ff-28e6d6eefd3b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.