Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | R. 99, nr 12 | 1--6
Tytuł artykułu

Key activities to improve energy management in DC microgrids connected by urban traction

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
PL
Kluczowe działania na rzecz poprawy zarządzania energią w mikrosieciach DC podłączonych do trakcji miejskiej
Języki publikacji
EN
Abstrakty
EN
DC MicroGrids must have Energy Management Systems to guarantee efficient, dependable, and environmentally friendly electricity. The application of Model Predictive Control, proved to be helpful due to its adaptability and capacity to use non-linear models. This paper, based on an extensive literature review, identifies and discusses the three key activities to improve the characteristics of DC MicroGrids, i.e.: the use of Energy Storage Systems), the implementation of Demand Side Management, and the use of Model Predictive Control.
PL
Wydajna eksploatacja mikrosieci DC wymaga zastosowania efektywnych systemów zarządzania energią. W artykule przedstawiono przegląd proponowanych rozwiązań oraz omówiono trzy przykładowe podejścia ukierunkowane na poprawę efektywności mikrosieci DC, tj. wykorzystanie systemów magazynowania energii, wdrożenie zarządzania popytem oraz wykorzystanie do sterowania modelu predykcyjnego, który ze względu na możliwość adaptacji do dowolnej konfiguracji sieci oraz uwzględnienie procesów o charakterze nieliniowym stanowi atrakcyjną alternatywę w stosunku do innych rozwiązań.
Wydawca

Rocznik
Strony
1--6
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
Bibliografia
  • [1] Hanema J., Toth R., Lazar M., “Stabilizing non-linear mpc using linear parameter-varying representations,” in 2017 IEEE 56th Annual Conf. Decision Control (CDC), Dec 2017, pp. 3582–3587.
  • [2] Bordons C., Teno G., Marquez J. J., Ridao M. A., “Effect of the integration of disturbances prediction in energy management systems for microgrids,” in 2019 Int. Conf. on Smart Energy Systems and Technologies (SEST). IEEE, 2019, pp. 1–6.
  • [3] Sanki P., Basu M., Pal P. S., Das D., “Implementation of linear quadratic regulator in an isolated microgrid system,” in 2022 IEEE VLSI Device Circuit and System (VLSI DCS). IEEE, 2022, pp. 104–109.
  • [4] Mahmoud M. S., Alyazidi N. M., Abouheaf M. I., “Adaptive intelligent techniques for microgrid control systems: A survey,” Int. Journal of Electrical Power & Energy Systems, vol. 90, pp. 292–305, 2017.
  • [5] Roslan M., Hannan M., Ker P. J., Uddin M., “Microgrid control methods toward achieving sustainable energy management,” Applied Energy, vol. 240, pp. 583–607, 2019.
  • [6] Majji R. K., Mishra J. P., Dongre A. A., Model predictive control based autonomous DC microgrid integrated with solar photovoltaic system and composite energy storage. Sustainable Energy Technologies and Assessments, 54, 102862, 2022.
  • [7] Zhou F., Xiao F., Chang C., Shao Y., Song C., “Adaptive model predictive control-based energy management for semi-active hybrid energy storage systems on electric vehicles,” Energies, vol. 10, no. 7, p.1063, 2017.
  • [8] Chaudhary G., Lamb J. J., Burheim O. S., Austbo B., “Review of energy storage and energy management system control strategies in microgrids,” Energies, vol. 14, no. 16, p. 4929, 2021.
  • [9] Zhang S., Dai L., Xia Y., “Adaptive mpc for constrained systems with parameter uncertainty and additive disturbance,” IET Control Theory & Applications, vol. 13, no. 15, pp. 2500– 2506, 2019.
  • [10] Zhang C., Yan H.-S., “Multidimensional taylor network adaptive control for mimo time-varying uncertain nonlinear systems with noises,” Int. Journal of Robust and Nonlinear Control, vol. 30, no. 1, pp. 397– 420, 2020.
  • [11] Mohamed M. A., Diab A. A. Z., Rezk H., Jin T., “A novel adaptive model predictive controller for load frequency control of power systems integrated with dfig wind turbines,” Neural Computing and Applications, vol. 32, no. 11, pp. 7171– 7181, 2020.
  • [12] Lu X., Cannon M., Koksal-Rivet D., “Robust adaptive model predictive control: Performance and parameter estimation,” Int. Journal of Robust and Nonlinear Control, vol. 31, no. 18, pp. 8703–8724, 2021.
  • [13] Amirthalakshmi T., et al., “A novel approach in hybrid energy storage system for maximizing solar pv energy penetration in microgrid,” International Journal of Photoenergy, vol. 2022, pp. 1–7, 2022.
  • [14] Xiong R., Chen H., Wang C., Sun F., “Towards a smarter hybrid energy storage system based on battery and ultracapacitor-a critical review on topology and energy management,” Journal of Cleaner Production, vol. 202, pp. 1228–1240, 2018.
  • [15] Lin X., Zamora R., “Controls of hybrid energy storage systems in microgrids: Critical review, case study and future trends,” Journal of Energy Storage, vol. 47, p. 103884, 2022.
  • [16] Ma T., Yang H., Lu L., “Development of hybrid battery– supercapacitor energy storage for remote area renewable energy systems,” Applied Energy, vol. 153, pp. 56–62, 2015.
  • [17] Zhou, S., Chen, Z., Huang, D., Lin, T., Model prediction and rule based energy management strategy for a plug-in hybrid electric vehicle with hybrid energy storage system. IEEE Transactions on Power Electronics, 36(5), 5926- 5940, 2020.
  • [18] Tapia G., Tapia A., Ostolaza J. X., Proportional– integral regulator-based approach to wind farm reactive power management for secondary voltage control. IEEE Transactions on Energy Conversion, 22(2), 488-498, 2007.
  • [19] Zheng Ni. F., et al., Enhancing resilience of DC microgrids with model predictive control based hybrid energy storage system. International Journal of Electrical Power & Energy Systems, 128, 106738, 2021.
  • [20] Zhang Q., Wang L., Li G., Liu Y., A real-time energy management control strategy for battery and supercapacitor hybrid energy storage systems of pure electric vehicles. Journal of Energy Storage, 31, 101721, 2020.
  • [21] Wang Y., Wang L., Li M., Chen Z., “A review of key issues for control and management in battery and ultracapacitor hybrid energy storage systems,” ETransportation, vol. 4, p. 100064, 2020.
  • [22] Liedke M., Łowiec E., Matelski W., Wolski L., Strzelecki R., Selection of AHI + SC Hybrid Storage Based on Mathematical Models and Load Variation Characteristics, Przegląd Elektrotechniczny, 94, nr 5, 120-127, 2018.
  • [23] Mohseni P., Husev 0., Vinnikov D., Strzelecki R., Romero-Cadaval E., Tokarski I., Battery Technologies in Electric Vehicles: Improvements in Electric Battery Packs," in IEEE Industrial Electronics Magazine, doi: 10.1109/MIE.2023. 3252265.
  • [24] He Y., Guo S., Dong P., Wang C., Huang J., Zhou J., “Technoeconomic comparison of different hybrid energy storage systems for off-grid renewable energy applications based on a novel probabilistic reliability index,” Applied Energy, vol. 328, p. 120225, 2022.
  • [25] Kandidayeni M., Macias A., Boulon L., Kelouwani S., “Investigating the impact of ageing and thermal management of a fuel cell system on energy management strategies,” Applied Energy, vol. 274, p. 115293, 2020.
  • [26] Derakhshan G., Shayanfar H. A., Kazemi A., “The optimization of demand response programs in smart grids,” Energy Policy, vol. 94, pp. 295–306, 2016.
  • [27] Golmohamadi H., “Demand-side management in industrial sector: A review of heavy industries,” Renewable and Sustainable Energy Reviews, vol. 156, p. 111963, 2022.
  • [28] Jordehi A. R., “Optimisation of demand response in electric power systems, a review,” Renewable and sustainable energy reviews, vol. 103, pp. 308–319, 2019.
  • [29] Samadi P., Mohsenian-Rad A. H., Schober R., Wong V. W., Jatskevich J., Optimal real-time pricing algorithm based on utility maximization for smart grid. First IEEE international conference on smart grid communications, 415-420, 2010.
  • [30] Mohsenian-Rad A. H., Leon-GarciaA., Optimal residential load control with price prediction in real-time electricity pricing environments. IEEE transactions on Smart Grid, 1(2), 120-133, 2010.
  • [31] Sepulveda A., Paull L., Morsi W. G., Li H., Diduch C. P., Chang, L., A novel demand side management program using water heaters and particle swarm optimization. IEEE Electrical Power & Energy Conference, 1-5, 2010.
  • [32] Logenthiran T., Srinivasan D., Shun T. Z., Demand side management in smart grid using heuristic optimization. IEEE transactions on smart grid, 3(3), 1244-1252, 2012.
  • [33] Qian L. P., Zhang Y. J, Huang J., Wu Y., Demand response management via real-time electricity price control in smart grids. IEEE Journal on Selected areas in Communications, 31(7), 1268-1280, 2013.
  • [34] Derakhshan G., Shayanfar H. A., Kazemi A., The optimization of demand response programs in smart grids. Energy Policy, 94, 295-306, 2016.
  • [35] Gbadega P. A., Saha A. K., Impact of incorporating disturbance prediction on the performance of energy management systems in micro-grid. IEEE Access, 8, 162855- 162879, 2020.
  • [36] Freire V. A., De Arruda L. V. R., Bordons C., Márquez, J. J., Optimal demand response management of a residential microgrid using model predictive control. IEEE Access, 8, 228264-228276, 2020.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-033d9136-66f3-4672-9575-c73d339ef6b1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.