Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | no. 60 | 50--58
Tytuł artykułu

Role of phytolith occluded carbon of cereales plants for climate change mitigation

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Phytolith-occluded carbon (PhytOC) is highly stable, and constitutes an important source of long-term C storage in agrosystems. This stored carbon is resistant to the processes of oxidation of carbon compounds. In our research phytolith content in barley (Estonia) and oat (Poland) grain and straw was assessed at field trials, with Si as a liquid immune stimulant OPTYSIL and compost fertilisation. We showed that cereals can produce relatively high amounts of phytoliths. PhytOC plays a key role in carbon sequestration, particularly for poor, sandy Polish and Estonian soils. The phytolith content was always higher in straw than in grain regardless of the type of cereals. The phytolith content in oat grains varied from 18.46 to 21.28 mg∙g-1 DM, and in straw 27.89-38.97 mg∙g-1 DM. The phytolith content in barley grain ranged from 17.24 to 19.86 mg∙g-1 DM, and in straw from 22.06 to 49.08 mg∙g-1 DM. Our results suggest that oat ecosystems can absorb from 14.94 to 41.73 kg e-CO2∙ha-1 and barley absorb from 0.32 to 1.60 kg e-CO2∙ha-1. The accumulation rate of PhytOC can be increased 3-fold in Polish conditions through foliar application of silicon, and 5-fold in Estonian conditions. In parallel, the compost fertilisation increased the phytolith content in cereals.
Wydawca

Rocznik
Tom
Strony
50--58
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wykr.
Twórcy
  • Warsaw University of Life Sciences – SGGW, Institute of Agriculture, Nowoursynowska St, 166, 02-787 Warsaw, Poland, beata_rutkowska@sggw.edu.pl
  • Helmholtz Center for Environmental Health, German Research Center for Environmental Health, Research Unit Environmental Simulation, Ingolstädter Landstraße 1, D-85764 Neuherberg, Munich, Germany, peter.schroeder@helmholtz-muenchen.de
  • University of Bordeaux, Amphithéâtre 3 à 12, 33000, Bordeaux, France, michel.mench@inra.fr
  • INRAE – National Research Institute for Agriculture, Food and the Environment, 147 rue de l’Université 75338, Paris, France
  • Warsaw University of Life Sciences – SGGW, Institute of Agriculture, Nowoursynowska St, 166, 02-787 Warsaw, Poland, wieslaw_szulc@sggw.edu.pl
  • Estonian University of Life Sciences, Institute of Agricultural and Environmental Sciences, Fr. R. Kreutzwaldi 1, 51006, Tartu, Estonia, kristjan.tiideberg@emu.ee
  • Warsaw University of Life Sciences – SGGW, Institute of Agriculture, Nowoursynowska St, 166, 02-787 Warsaw, Poland, tomasz_niedzinski@sggw.edu.pl
autor
  • Estonian University of Life Sciences, Institute of Agricultural and Environmental Sciences, Fr. R. Kreutzwaldi 1, 51006, Tartu, Estonia, evelin.loit@emu.ee
Bibliografia
  • Anjum, M. and Nagabovanalli, P.B. (2021) “Assessing production of phytolith and phytolith occluded carbon in above-ground biomass of intensively cultivated rice ecosystems in India,” Carbon Management, 12, pp. 509–519. Available at: https://doi.org/10.1080/17583004.2021.1978552.
  • Davamani V. et al. (2022) “Phytolith-occluded carbon sequestration potential of oil palm plantation in Tamil Nadu,” ACS Omega, 7, pp. 2809–2820. Available at: https://doi.org/10.1021/acsomega.1c05592.
  • Guo, F. et al. (2015) “Enhancing phytolith carbon seques-tration in rice ecosystems through basalt powder amendment,” Science Bulletin, 60, pp. 591–597. Available at: ttps://doi.org/10.1007/s11434-015-0729-8.
  • Handke, M. (2008) Krystalochemia krzemianów [Crystallochemistry of silicates]. 2nd edn. Kraków: Uczelniane Wydawnictwa Naukowo-Dydaktyczne.
  • Hodson, M.J. et al. (2008) “Silicon, oxygen and carbon isotope composition of wheat (Triticum aestivum L.) phytoliths: Implications for palaeoecology and archaeology,” Journal of Quaternary Science, 23, pp. 331–339. Available at: https://doi.org/10.1002/jqs.1176.
  • ISO 10390:2021. Soil, treated biowaste and sludge – Determination of pH. Geneva: International Organization for Standardization.
  • ISO 10694:1995. Soil quality. Determination of organic and total carbon after dry combustion (elementary analysis). Geneva: International Organization for Standardization.
  • ISO 11261:1995. Soil quality – Determination of total nitrogen modified Kjeldahl method. Geneva: International Organization for Standardization.
  • IUSS Working Group WRB (2015) “World reference base for soil resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps,” World Soil Resources Reports, 106. Rome: FAO. Available at: https://www.fao.org/3/i3794en/I3794en.pdf (Accessed: August 14, 2023).
  • Jones, R.L. and Beavers, A.H. (1963) “Some mineralogical and chemical properties of plant opal,” Soil Science, 96, pp. 375–379. Available at: https://journals.lww.com/soilsci/Citation/1963/12000/Some_-Mineralogical_and_Chemical_Properties_of.3.aspx (Accessed: August 14, 2023).
  • Kaur, H. and Greger, M. (2019) “A review on Si uptake and transport system,” Plants, 8(4), 81. Available at: https://doi.org/10.3390/plants8040081.
  • Liu, L. et al. (2023) “Enhancement of phytolith-occluded carbon accumulation of Moso bamboo response to temperatur es elevation and different fertilization,” Frontiers in Plant Science, 14, 1144961. Available at: https://doi.org/10.3389/fpls.2023.1144961.
  • Liu, Z. et al. (2023) “Monitoring global carbon emissions in 2022,” Nature Reviews Earth & Environment, 4, pp. 205–206. Available at: https://doi.org/10.1038/s43017-023-00406-z.
  • Lv, W. et al. (2020) “Effects of different management practices on the increase in phytolith-occluded carbon in Moso bamboo forests,” Frontiers in Plant Science, 11, 591852. Available at: https://doi.org/10.3389/fpls.2020.591852.
  • Majumdar, S. and Prakash, N.B. (2020) “An overview on the potential of silicon in promoting defense against biotic and abiotic stresses in sugarcane,” Journal of Soil Science and Plant Nutrition, 20(4), pp. 1969–1998. Available at: https://doi.org/10.1007/s42729-020-00269-z.
  • Malik, M.A. et al. (2021) “Elucidating the role of silicon in drought stress tolerance in plants,” Plant Physiology and Biochemistry, 165, pp. 187–195. Available at: https://doi.org/10.1016/j.plaphy.2021.04.021.
  • Nguyen, M.N. et al. (2019) “Phytolith content in Vietnamese paddy soils in relation to soil properties,” Geoderma, 333, pp. 200–213. Available at: https://doi.org/10.1016/j.geoderma.2018.07.027.
  • Parr, J. et al. (2010) “Carbon bio-sequestration within the phytoliths of economic bamboo species,” Global Change Biology, 16, pp. 2661–2667. Available at: https://doi.org/10.1111/j.1365-2486.2009.02118.x.
  • Parr, J.F. and Sullivan, L.A. (2005) “Soil carbon sequestration in phytoliths,” Soil Biology and Biochemistry, 37, pp. 117–124. Available at: https://doi.org/10.1016/j.soilbio.2004.06.013.
  • Parr, J.F. and Sullivan, L.A. (2011) “Phytolith occluded carbon and silica variability in wheat cultivars,” Plant and Soil, 342, pp. 165–171. Available at: https://doi.org/10.1007/s11104-010-0680-z.
  • Parr, J.F. and Sullivan, L.A. (2014) “Comparison of two methods for the isolation of phytolith occluded carbon from plant material,” Plant and Soil, 374, pp. 45–53. Available at: https://doi.org/10.1007/s11104-013-1847-1.
  • Parr, J., Sullivan, L. and Quirck, R. (2009) “Sugarcane phytoliths: Encapsulation and sequestration of a long-lived carbon fraction,” Sugar Tech, 11(1), pp. 17–21. Available at: https://doi.org/10.1007/s12355-009-0003-y.
  • PN-R-04020:1994/Az1:2004. Analiza chemiczno-rolnicza gleby – Oznaczanie zawartości przyswajalnego magnezu [Chemical and agricultural analysis – determination of the content available magnesium in soil]. Warszawa: Polski Komitet Normalizacyjny.
  • PN-R-04022:1996/Az1:2002. Analiza chemiczno-rolnicza gleby – Oznaczanie zawartości przyswajalnego potasu w glebach mineralnych [Chemical and agricultural analysis – Determination of the content available potassium in mineral soil]. Warszawa: Polski Komitet Normalizacyjny.
  • PN-R-04023:1996. Analiza chemiczno-rolnicza gleby – Oznaczanie zawartości przyswajalnego fosforu w glebach mineralnych [Chemical and agricultural analysis – Determination of the kontent available phosphorus in mineral soil]. Warszawa: Polski Komitet Normalizacyjny.
  • Prabha, A.M. et al. (2022) “Silicon fertilizer – An imperative source for enhancing yield and phytolith content of maize hybrid in desilicated soil (Typic Rhodustalf),” Ecology, Environment and Conservation, 28(2), pp. 879–885. Available at: http://doi.org/10.53550/EEC.2022.v28i02.045.
  • Prajapati, K. et al. (2016) “Carbon occlusion potential of rice phytoliths: Implications for global carbon cycle and climate change mitigation,” Applied Ecology and Environmental Research, 14(2), pp. 265–281. Available at: https://doi.org/10.15666/aeer/1402_265281.
  • Qi, L.M. et al. (2021) “Phytolith-occluded carbon sequestration potential in three major steppe types along a precipitation gradient in Northern China,” Ecology and Evolution, 11, pp. 1446–1456. Available at: https://doi.org/10.1002/ece3.7155.
  • Rehman, I.U., Malik, M.A. and Rashid, I. (2023) “Silicon fertilization increases carbon sequestration by augmenting PhytOC production in wheat,” Journal of Soil Science and Plant Nutrition, 23, pp. 1149–1155. Available at: https://doi.org/10.1007/s42729-022-01110-5.
  • Sharma, R., Kumar, V. and Kumar, K. (2019) “Distribution of phytoliths in plants: A review,” Geology, Ecology and Landscapes, 3 (2), pp. 123–148. Available at: https://doi.org/10.1080/24749508.2018.1522838.
  • Song, Z. et al. (2017) “Phytolith carbon sequestration in global terrestrial biomes,” Science of The Total Environment, 603, pp. 502–509. Available at: https://doi.org/10.1016/j.scitotenv.2017.06.107.
  • Song, Z. et al. (2022) “High potential of stable carbon sequestration in phytoliths of China’s grasslands,” Global Change Biology, 28(8), pp. 2736–2750. Available at: https://doi.org/10.1111/gcb.16092.
  • Song, Z.L., McGrouther, K. and Wang, H.L. (2016) “Occurrence, turnover and carbon sequestration potential of phytoliths in terrestrial ecosystems,” Earth-Science Reviews, 158, pp. 19–30. Available at: https://doi.org/10.1016/j.earscirev.2016.04.007.
  • Trading Economics (no date) Estonia – Barley: Area (cultivation/harvested/production). Available at: https://tradingeconomics.com/estonia/barley-area-cultivation-harvested-production-euro-stat-data.html (Accessed: August 18, 2023).
  • Wang, L. and Sheng, M. (2022) “Phytolith occluded organic carbon in Fagopyrum (Polygonaceae) plants: Insights on the carbon sink potential of cultivated buckwheat planting,” Frontiers in Plant Science, 13, 1014980. Available at: https://doi.org/10.3389/fpls.2022.1014980.
  • Wenjuan, L. et al. (2022) “The spatial distribution of phytoliths and phytolith-occluded carbon in wheat (Triticum aestivum L.) ecosystem in China,” Science of The Total Environment, 850, 158005. Available at: https://doi.org/10.1016/j.scitotenv.2022.158005.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-030f3cda-a19d-4cf2-9efe-abaec961dc98
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.