Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 44, no 4 | 563--579
Tytuł artykułu

The analysis of the stability of the Cauchy problem in the cylindrical double-layer area

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ceramic protective coats, for instance, on turbine blades, create a double-layer area with various thermophysical properties and they require metal temperature control. In this paper, it is implemented by formulating a Cauchy problem for the equation of thermal conductivity in the metal cylindrical area with a ceramic layer. Due to the ill posed problem, a regularization method was applied consisting in the notation of thermal balance for the ceramic layer. A spectral radius for the equation matrix was taken as the stability measure of the Cauchy problem. Numerical calculations were performed for a varied thickness of the ceramic layer, with consideration of the non-linear thermophysical properties of steel and a ceramic layer (zirconium dioxide). A polynomial was determined which approximates temperature distribution in time for the protective layer. The stability of solutions was compared for undisturbed and disturbed temperature values, and thermophysical parameters with various ceramic layer thickness. The obtained calculation results confirmed the effectiveness of the proposed regularization method in obtaining stable solutions at random data disturbance.
Wydawca

Rocznik
Strony
563--579
Opis fizyczny
Bibliogr. 46 poz., rys.
Twórcy
  • Poznan University of Technology, Institute of Thermal Engineering, Piotrowo 3a, 60-965, Poznań, Poland
  • Poznan University of Technology, Institute of Applied Mechanics, Jana Pawła II 24, 60-965, Poznań, Poland
  • Poznan University of Technology, Institute of Applied Mechanics, Jana Pawła II 24, 60-965, Poznań, Poland
  • Military University of Technology, Sylwestra Kaliskiego 2, 00-908 Warszawa, Poland
  • Military University of Technology, Sylwestra Kaliskiego 2, 00-908 Warszawa, Poland
Bibliografia
  • [1] Ciupek B., Gołoś K., Jankowski R., Nadolny Z.: Effect of hard coal combustion in water steam environment on chemical composition of exhaust gases. Energies14(2021) 20, 6530-1–6530-24. doi: 10.3390/en14206530
  • [2] Grzymisławski P., Czyżewski P., Ślefarski R.: Nitrogen dilution effect on swirl stabilized methane burning in gas turbine conditions. Heat Transfer Eng. 44(2023), 11-12,1053–1060. doi: 10.1080/01457632.2022.2113443
  • [3] Joachimiak D.: Novel method of the seal aerodynamic design to reduce leakage by matching the seal geometry to flow conditions. Energies 14(2021), 23, 7880-1–7880-16. doi: 10.3390/en14237880
  • [4] Joachimiak D., Frąckowiak A.: Experimental and numerical analysis of the gas flow in the axisymmetric radial clearance. Energies 13(2020), 21, 5794-1–5794-13. doi:10.3390/en13215794
  • [5] Joachimiak D., Krzyślak P.: Experimental research and CFD calculations based investigations into gas flow in a short segment of a heavily worn straight through labyrinth seal. Pol. Marit. Res. 24(2017), 2, 83–88. doi: 10.1515/pomr-2017-0053
  • [6] Joachimiak M., Joachimiak D., Ciałkowski M.: Investigation on thermal loads in steady-state conditions with the use of the solution to the inverse problem. Heat Transfer Eng. 44(2023), 11-12, 963–969. doi: 10.1080/01457632.2022.2113451
  • [7] Frąckowiak A., Ciałkowski M., Wróblewska A.: Application of iterative algorithms for gas-turbine blades cooling optimization. Int. J. Therm. Sci. 118(2017), 198–206.doi: 10.1016/j.ijthermalsci.2017.04.016
  • [8] Frąckowiak A., von Wolfersdorf J., Ciałkowski M.: Optimization of cooling of gas turbine blades with channels filled with porous material. Int. J. Therm. Sci. 136(2019), 370–378. doi: 10.1016/j.ijthermalsci.2018.09.005
  • [9] Frąckowiak A., von Wolfersdorf J., Ciałkowski M.: Solution of the inverse heat conduction problem described by the Poisson equation for a cooled gas-turbine blade. Int. J. Heat Mass Tran. 54(2011), 5-6, 1236–1243. doi: 10.1016/j.ijheatmasstransfer.2010.11.001
  • [10] Ciałkowski M., Olejnik A., Joachimiak M., Grysa K., Frąckowiak A.: Cauchy type nonlinear inverse problem in a two-layer area. Int. J. Numer. Method. H. 32(2022),1, 313–331. doi: 10.1108/HFF-09-2020-0584
  • [11] Ciałkowski M., Olejnik A., Frąckowiak A., Lewandowska N., Mosiężny J.: Cauchy type inverse problem in a two-layer area in the blades of gasturbine. Energy212(2020), 118751. doi: 10.1016/j.energy.2020.118751
  • [12] Solekhudin I., Azis M.I.: A dual reciprocity method for a class of heat conduction problems in two-layered materials. Int. J. Comput. Sci. 50(2023), 1, 1–10.
  • [13] Joachimiak M., Ciałkowski M., Frąckowiak A.: Stable method for solving the Cauchy problem with the use of Chebyshev polynomials. Int. J. Numer. Method. H. 30(2020),3, 1441–1456. doi: 10.1108/HFF-05-2019-0416
  • [14] Joachimiak M., Ciałkowski M.: Influence of the heat source location on the stability of the solution to the Cauchy problem. E3S Web Conf. 323(2021), 00016, 1–2. doi:10.1051/e3sconf/202132300016
  • [15] Ciupek B., Judt W., Gołoś K., Urbaniak R.: Analysis of low-power boilers work on real heat loads: A case of Poland. Energies 14(2021), 11, 3101-1–3101-13. doi:10.3390/en14113101
  • [16] Judt W., Ciupek B., Urbaniak R.: Numerical study of a heat transfer process in a low power heating boiler equipped with afterburning chamber. Energy 196(2020),117093. doi: 10.1016/j.energy.2020.117093
  • [17] Taler J., Weglowski B., Pilarczyk M.: Monitoring of thermal stresses in pressure components using inverse heat conduction methods. Int. J. Numer. Method. H. 27(2017), 3, 740–756. doi: 10.1108/HFF-03-2016-0091
  • [18] Joachimiak M., Ciałkowski M., Bartoszewicz J.: Analysis of temperature distribution in a pipe with inner mineral deposit. Arch. Thermodyn. 35(2014), 2, 37–49. doi:10.2478/aoter-2014-0012
  • [19] Zieliński M., Koniorczyk P., Surma Z., Zmywaczyk J., Preiskorn M.: Numerical study of heat transfer in a gun barrel made of selected steels. Energies 15(2022), 1868, 1–24.doi: 10.3390/en15051868
  • [20] Brodzik Ł., Frąckowiak A.: Optimization of the heat flow by solving inverse problem in the protective layer of the TPS panel. Int. J. Numer. Method. H. 30(2020), 6, 2989–3003. doi: 10.1108/HFF-12-2018-0749
  • [21] Chung S.Y.: Uniqueness in the Cauchy problem for the heat equation. P. Edinburgh Math Soc. 42(1999), 455–468.
  • [22] Hadamard J.: Lectures on Cauchy’s Problem in Linear Partial Differential Equations. Dover Publ., New York 1953.
  • [23] Joachimiak M., Ciałkowski M.: Optimal choice of integral parameter in a process of solving the inverse problem for heat equation. Arch. Thermodyn. 35(2014), 3,265–280.
  • [24] Mierzwiczak M., Kołodziej J.A.: The determination of heat sources in two dimensional inverse steady heat problems by means of the method of fundamental solutions. Inverse Probl. Sci. En. 19(2011), 6, 777–792. doi: 10.1080/17415977.2010.539685
  • [25] Mierzwiczak M., Kołodziej J.A.: The determination temperature-dependent thermal conductivity as inverse steady heat conduction problem. Int. J. Heat Mass Tran. 54(2011), 4, 790–796. doi: 10.1016/j.ijheatmasstransfer.2010.10.024
  • [26] Payne L.E., Philippin G.A.: An ill-posed problem for the heat equation. Math. Mod. Meth. Appl. S. 19(2009), 9, 1631–1641.
  • [27] Belgacem F.B.: Why is the Cauchy problem severely ill-posed? Inverse Probl.23(2007), 2, 823–836.
  • [28] Joachimiak M., Ciałkowski M.: Non-linear unsteady inverse boundary problem for heat conduction equation. Arch. Thermodyn. 38(2017), 2, 81–100. doi: 10.1515/aoter-2017-0011
  • [29] Joachimiak M., Ciałkowski M.: Stable solution to nonstationary inverse heat conduction equation. Arch. Thermodyn. 39(2018), 1, 25–37. doi: 10.1515/aoter-2018-0002
  • [30] Mierzwiczak M., Chen W., Fu Z.-J.: The singular boundary method for steady-state nonlinear heat conduction problem with temperature-dependent thermal conductivity. Int. J. Heat Mass Tran. 91(2015), 205–217. doi: 10.1016/j.ijheatmasstransfer.2015.07.051
  • [31] Jaremkiewicz M., Taler J.: Online determining heat transfer coefficient for monitoring transient thermal stresses. Energies 13(2020), 3, 704, 1–13. doi:10.3390/en13030704
  • [32] Joachimiak M.: Analysis of thermodynamic parameter variability in a chamber of a furnace for thermo-chemical treatment. Energies 14(2021), 10, 2903, 1–18. doi:10.3390/en14102903
  • [33] Joachimiak M., Joachimiak D.: Analysis of heating time and of temperature distributions for cylindrical geometry with the use of solution to the inverse problem. E3S Web Conf. 323(2021), 00013, 1–4. doi: 10.1051/e3sconf/202132300013
  • [34] Joachimiak M., Joachimiak D.: Modelling of the cylindrical geometry cooling process based on the solution of the inverse problem. E3S Web Conf. 321(2021), 02017, 1–5.
  • [35] Joachimiak M., Joachimiak D., Ciałkowski M., Małdziński L., Okoniewicz P., Ostrowska K.: Analysis of the heat transfer for processes of the cylinder heating in the heat-treating furnace on the basis of solving the inverse problem. Int. J. Therm. Sci.145(2019), 105985, 1–11. doi: 10.1016/j.ijthermalsci.2019.105985
  • [36] Engl H.W., Hanke M., Neubauer A.: Regularization of Inverse Problems. Mathematics and its Applications. Kluwer, Dordrecht 1996.
  • [37] Hansen P.C.: Regularization tools: a Matlab package for analysis and solution of discrete ill-posed problems. Numer. Algorithms 6(1994), 1-2, 1–35.
  • [38] Joachimiak M.: Choice of the regularization parameter for the Cauchy problem for the Laplace equation. Int. J. Numer. Method. H. 30(2020), 10, 4475–4492. doi:10.1108/HFF-10-2019-0730
  • [39] Tikhonov A.N., Arsenin V.Y.: Solution of Ill-Posed Problems. Wiley, New York1977.
  • [40] Hasanov A., Mukanova B.: Relationship between representation formulas for unique regularized solutions of inverse source problems with final overdetermination and singular value decomposition of input-output operators. J. Appl. Math. 80(2015), 3,676–696.
  • [41] Hansen P.C.: Discrete Inverse Problems: Insight and Algorithms. SIAM, Philadelphia 2010.
  • [42] Marin L.: Numerical solution of the Cauchy problem for steady-state heat transfer in two-dimensional functionally graded materials. Int. J. Solids Struct. 42(2005),4338–4351.
  • [43] Wang M., Troesch, A.W.: Numerical stability analysis for free surface flows. Int. J. Numer. Meth. Fl. 24(1997), 893–912.
  • [44] Joachimiak M., Frąckowiak A., Ciałkowski M.: Solution of inverse heat conduction equation with the use of Chebyshev polynomials. Arch. Thermodyn. 37(2016), 4,73–88. doi: 10.1515/aoter-2016-0028
  • [45] Joachimiak D., Judt W., Joachimiak M.: Numerical analysis of the heating of a die for the extrusion of aluminium alloy profiles in terms of thermochemical treatment. Arch. Thermodyn. 44(2023), 2, 159–175. doi: 10.24425/ather.2023.146563
  • [46] Ciałkowski M., Joachimiak M., Mierzwiczak M., Frąckowiak A., Olejnik A., Kozakiewicz A.: Cauchy type nonlinear inverse problem in a two-layer cylindrical area. Heat Transfer Eng. (in print)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-02d25967-3618-40ad-853e-8fcdda3e7fea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.