Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | Vol. 41, nr 1 | 10--17
Tytuł artykułu

Residual stress distribution in Cu-4.3%Sn alloys fabricated by selective laser melting (SLM)

Warianty tytułu
PL
Rozkład naprężeń własnych w stopach Cu-4,3%Sn wytworzonych metodą strefowego stapiania laserowego (SLM)
Języki publikacji
EN
Abstrakty
EN
This paper is focused on the investigations of the residual stresses present in SLM Cu-4.3%Sn alloys, which were fabricated by the SLM process. The source Cu-4.3%Sn powder was analyzed for basic characteristics, and then the residual stress state was determined for 3D printed samples with different geometries before and after heat treatments. Stress measurements were performed using the X-ray diffraction ꞷ-sin2ψ method. Nonhomogeneous residual stresses were found to be present within SLM Cu-4.3%Sn alloys samples. Biaxial tensile stress was revealed in the interior of as-printed cube samples and it was reduced by annealing, whereas thin strip samples contained biaxial compressive stresses and after annealing the stress became more equi-biaxial but it was not reduced to zero near the sample surface. The results suggest how residual stresses are distributed within the copper SLM alloys with a simple shape. More complex geometries are expected to have correspondingly more complicated stress states. The performed investigation provides insight in to the residual stress distribution in copper alloys fabricated via SLM, which have not been widely studied yet. Application of the ꞷ-sin2ψ technique to the SLM process was analyzed and it was found that the methodology of utilizing the ꞷ-sin2ψ can be widely applied using standard X-ray diffraction facilities to study residual stresses within the additively manufactured metal alloy parts.
PL
Celem pracy było ustalenie stanu naprężeń własnych w stopach Cu-4,3%Sn wytwarzanych metodą selektywnego stapiania laserowego (SLM). Wyniki pomiaru naprężeń zostały skorelowane z uprzednio zmierzonymi właściwościami mechanicznymi i mikrostrukturą. W ramach pracy oceniono, czy zastosowany proszek ze stopu Cu-4,3%Sn spełnia oczekiwania stawiane materiałom na wyroby uzyskiwane techniką SLM oraz sprawdzono, czy metoda dyfrakcyjna ꞷ-sin2ψ jest odpowiednią metodą do pomiarów naprężeń szczątkowych w wyrobach ze stopu miedzi wykonanych metodą SLM.
Wydawca

Rocznik
Strony
10--17
Opis fizyczny
Bibliogr. 20 poz., fig., tab.
Twórcy
autor
  • Lehigh University, Loewy Institute & Materials Science and Engineering Department
  • Carnegie Mellon University, Department of Materials Science and Engineering, Pittsburgh
  • Lehigh University, Loewy Institute & Materials Science and Engineering Department
Bibliografia
  • [1] Wu S., Brown W., Kumar M., Gallegos G.F., King W.E.: An experimental investigation into additive manufacturing-induced residual stress in 316l stainless steel. Metallurgical and Materials Transactions A 45 (13) (2014) 6260-6270.
  • [2] Mercelis P., Kruth J-P.: Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyping Journal 12 (5) (2006) 254-265.
  • [3] Yadroitsev I., Yadroitsava I.: Evaluation of residual stress in stainless steel 316L and Ti6Al4V samples produced by selective laser melting. Journal Virtual and Physical Prototyping 10 (2015) 67-76.
  • [4] Simson T., Emmel A., Dwars A., Bohm J.: Residual stress measurements on AISI 316L samples manufactured by selective laser melting. Additive Manufacturing 17 (2017) 183-189.
  • [5] Mishurova T., Cabeza S., Artzt K., Haubrich J., Klaus M., Genzel C., Requena G., Bruno G.: An assessment of subsurface residual stress analysis in SLM Ti- -6Al-4V. Materials 10 (4) (2017) 348-362.
  • [6] Kandil F.A., Lord J.D., Fry A.T., Grant, P.V.: A review of residual stress measurement methods. A guide to technique selection. National Physical Laboratory, Teddington, Middlesex, TW11 0LW, UK, NPL Report MATC (A) O4, ISSN 1473- 2734 (2001).
  • [7] Skrzypek S.J., Baczmanski A., Ratuszek W., Kusior E.: New approach to stress analysis based on grazing incidence X-ray diffraction. Journal of Applied Crystallography 34 (4) (2002) 427-435.
  • [8] Fitzpatrick M.E., Fry A.T., Holdwar P., Kandil F.A., Shackleton J., Suominen L.: Determination of residual stresses by X-ray diffraction. Issue 2 Measurement good practice guide no. 52, National Physical Laboratory, Teddington, Middlesex, TW11 0LW, UK, ISSN 1744-3911 (2005).
  • [9] Norberg N.: Characterization of metals using X-ray diffraction. PANalytical Webinar “XRD on metals", Application Competence Center PANalytical, Almelo, Netherlands (2014).
  • [10] Ventura A.P., Wade C.A., Pawlikowski G., Bayes M., Watanabe M., Misiolek W.Z.: Mechanical properties and microstructural characterization of Cu-4.3%Sn fabricated by selective laser melting. Metallurgical and Materials Transactions A 48 (1) (2017) 178-187.
  • [11] Rasband W.S.: ImageJ, U.S. National Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/ (1997), accessed January 2017.
  • [12] German R.M.: Powder metallurgy and particulate materials processing: the processes, materials, products, properties, and applications, Metal Powder Industries Federation Princeton, NJ, USA (2005).
  • [13] Gürsoy D., De Carlo F., Xiao X., Jacobsen C.: TomoPy: a framework for the analysis of synchrotron tomographic data. Journal of Synchrotron Radiation 21 (5) (2014) 1188-1193.
  • [14] Neikov O.D., Naboychenko S., Murashova I.V., Gopienko V.G., Frishberg I.V., Lotsko, D.V.: Atomization and granulation. Handbook of Non-Ferrous Metal Powders, Elsevier Ltd., Oxford, UK (2009) 102-142.
  • [15] Tammas-Williams S., Zhao H., Léonard F., Derguti F., Todd I., Prangnell P.B.: XCT analysis of the influence of melt strategies on defect poprulation in Ti-6Al- -4V components manufactured by selective electron beam melting. Materials Characterization 102 (2015) 47-61.
  • [16] Cunningham R., Narra S.P., Montgomery C., Beuth J., Rollett A.D.: Synchrotron- based X-ray microtomography characterization of the effect of processing variables on porosity formation in laser power-bed additive manufacturing of Ti-6Al-4V. JOM (2017) 1-6.
  • [17] Thijs L., Kempen K., Kruth J-P., Humbeeck J.V.: Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder. Acta Materialia 61 (5) (2013) 1809-1819.
  • [18] Thijs L., Verhaeghe F., Craeghs T., Humbeeck J.V., Kruth J-P.: A study of the microstructural evolution during selective laser melting of Ti-6Al-4V. Acta Materialia 58 (9) (2010) 3303-3312.
  • [19] Antonysamy A.A., Meyer J., Pragnell P.B.: Effect of build geometry on the β-grain structure and texture in additive manufacture of Ti-6Al-4V by selective electron beam melting. Materials Characterization 84 (2013) 153-168.
  • [20] Kou S.: Weld metal solidification. Grain structure. Welding Metallurgy, John Wiley & Sons, Inc., Hoboken, NJ (2003) 170-198.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-02b99317-d148-49c8-badf-7b06be8a242b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.