Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 18, no 2 | 88--102
Tytuł artykułu

Influence of Gear Eccentricity with Non-Parallel Axis on the Dynamic Behaviour of a Gear Unit Using a Gear Slice Model with 26 Degrees of Freedom

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study investigates the problems of eccentricity and backlash using an analytical spur gear model with 26 degrees of freedom (DOF). Previous studies have only investigated the case of eccentricity with a parallel shift of the axis of rotation of the gear relative to its geometric axis of symmetry. This study presents a novel method for determining the radius of eccentricity and its angular position at any distance from the bearing support, in which the axis of rotation and the geometric axis of symmetry of the gear are non-parallel. The effect of gear motion in the line of action (LOA) and off-line of action (OLOA) directions on backlash is precisely determined, despite the fact that most studies usually ignore gear displacement along the OLOA direction. Numerical simulations are performed to determine the effect of eccentricity on backlash, and their results confirm that the proposed method for determining the radius of eccentricity for any eccentricity type is correct. A gear slice model is used for dynamic analysis. Results show that the type of eccentricity has a significant effect on the gear dynamics and that eccentricity analyses have to include other cases than merely eccentricity with parallel axes of gears.
Słowa kluczowe
Wydawca

Rocznik
Strony
88--102
Opis fizyczny
Bibliogr. 30 poz., fig., tab.
Twórcy
Bibliografia
  • 1. Ding S, Chen Z, Zhang H, Yang W, Wu W, Song A. Gear evaluation deviations-based crucial geometric error identification of five-axis CNC gear form grinding process. 2023; 99: 663–675.
  • 2. Carranza Fernandez R, Tobie T, Rommel S, Collazo J. Improve wind gears bending performance by means of IGS (Improved gear surface). Int J Fatigue. 2023; 172: 107618.
  • 3. Sun Z, Chen S, Hu Z, Tao X. Improved mesh stiffness calculation model of comprehensive modification gears considering actual manufacturing. Mech Mach Theory. 2022; 167: 104470. https://doi.org/10.1016/j.mechmachtheory.2021.104470
  • 4. Li Z, Zhu C, Liu H, Gu Z. Mesh stiffness and nonlinear dynamic response of a spur gear pair considering tribo-dynamic effect: Manuscript submitted for publication in Mechanism and Machine Theory. Mech Mach Theory. 2020; 153: 103989. https://doi.org/10.1016/j.mechmachtheory.2020.103989.
  • 5. Zhang C, Dong H, Wang D, Dong B. A new effective mesh stiffness calculation method with accurate contact deformation model for spur and helical gear pairs. Mech Mach Theory. 2022; 171: 104762. https://doi.org/10.1016/j.mechmachtheory.2022.104762 6. Jordan JM, Blockmans B, Desmet W. A linear formulation for misaligned helical gear contact analysis using analytical contact stiffnesses. Mech Mach Theory. 2023; 187.
  • 7. Zhao Y, Liu Y, Xin X, Yu S, Ma H, Han Q. Dynamic Modelling Considering Nonlinear Factors of Coupled Spur Gear System and Its Experimental Research. IEEE Access. 2020; 8: 84971–8480.
  • 8. Mo S, Li Y, Wang D, Hu X, Bao H, Cen G, et al. An analytical method for the meshing characteristics of asymmetric helical gears with tooth modifications. Mech Mach Theory. 2023; 185: 1–17.
  • 9. Zhao B, Huangfu Y, Ma H, Zhao Z, Wang K. The influence of the geometric eccentricity on the dynamic behaviors of helical gear systems. Eng Fail Anal. 2020; 118: 104907. https://doi.org/10.1016/j.engfailanal.2020.104907
  • 10. Wu X, Luo Y, Li Q, Shi J. A new analytical model for evaluating the time-varying mesh stiffness of helical gears in healthy and spalling cases. Eng Fail Anal. 2022; 131: 105842. https://doi.org/10.1016/j.engfailanal.2021.105842
  • 11. Ning J, Chen Z, Wang Y, Li Y, Zhai W. Vibration feature of spur gear transmission with non-uniform depth distribution of tooth root crack along tooth width. Eng Fail Anal. 2021; 129: 105713. https://doi.org/10.1016/j.engfailanal.2021.105713
  • 12. Li Y, Wei P, Xiang G, Jia C, Liu H. Gear contact fatigue life prediction based on transfer learning. Int J Fatigue. 2023; 173.
  • 13. Hong I, Aneshansley E, Chaudhury K, Talbot D. Stochastic microcontact model for the prediction of gear mechanical power loss. Tribol Int. 2023; 183.
  • 14. Wang Y, Wang H, Li K, Qiao B, Shen Z, Chen X. An analytical method to calculate the time-varying mesh stiffness of spiral bevel gears with cracks. Mech Mach Theory. 2023; 188: 105399. https://doi.org/10.1016/j.mechmachtheory.2023.105399
  • 15. Kim TC, Rook TE, Singh R. Super- and sub-harmonic response calculations for a torsional system with clearance nonlinearity using the harmonic balance method. J Sound Vib. 2005; 281: 965–993.
  • 16. Moradi H, Salarieh H. Analysis of nonlinear oscillations in spur gear pairs with approximated modelling of backlash nonlinearity. Mech Mach Theory. 2012; 51: 14–31. http://dx.doi.org/10.1016/j.mechmachtheory.2011.12.005
  • 17. Akoto CL, Spangenberg H. Modeling of backlash in drivetrains. 4th CEAS Air Sp Conf. 2013.
  • 18. Saghafi A, Farshidianfar A. An analytical study of controlling chaotic dynamics in a spur gear system. Mech Mach Theory. 2016; 96: 179–191.
  • 19. Margielewicz J, Gąska D, Litak G. Modelling of the gear backlash. Nonlinear Dyn. 2019; 97: 355–368.
  • 20. Xiong Y, Huang K, Xu F, Yi Y, Sang M, Zhai H. Research on the influence of backlash on mesh stiffness and the nonlinear dynamics of spur gears. Appl Sci. 2019; 9: 1–13.
  • 21. Zuo Z, Ju X, Ding Z. Control of Gear Transmission Servo Systems with Asymmetric Deadzone Nonlinearity. IEEE Trans Control Syst Technol. 2016; 24: 1472–1479.
  • 22. Walha L, Driss Y, Khabou MT, Fakhfakh T, Haddar M. Effects of eccentricity defect on the nonlinear dynamic behavior of the mechanism clutch-helical two stage gear. Mech Mach Theory. 2011; 46: 986–997.
  • 23. Liu H, Zhang C, Xiang CL, Wang C. Tooth profile modification based on lateral- torsional-rocking coupled nonlinear dynamic model of gear system. Mech Mach Theory. 2016; 105: 606–619. http://dx.doi.org/10.1016/j.mechmachtheory.2016.07.013
  • 24. Yu W, Mechefske CK, Timusk M. The dynamic coupling behaviour of a cylindrical geared rotor system subjected to gear eccentricities. Mech Mach Theory. 2017; 107: 105–122. http://dx.doi.org/10.1016/j.mechmachtheory.2016.09.017
  • 25. He X, Zhou X, Xue Z, Hou Y, Liu Q, Wang R. Effects of gear eccentricity on time-varying mesh stiffness and dynamic behavior of a two-stage gear system. J Mech Sci Technol. 2019; 33: 1019–1032.
  • 26. Chung WJ, Park JH, Yoo HG, Park YJ, Kim S chul, Sohn J hyeon, et al. Improved analytical model for calculating mesh stiffness and transmission error of helical gears considering trochoidal root profile. Mech Mach Theory. 2021; 163: 104386. https://doi.org/10.1016/j.mechmachtheory.2021.104386
  • 27. He Z, Zhang T, Lin T. Novel mathematical modelling method for meshing impact of helical gear. Mech Mach Theory. 2020; 152.
  • 28. Xiang L, Gao N. Coupled torsion–bending dynamic analysis of gear-rotor-bearing system with eccentricity fluctuation. Appl Math Model. 2017; 50: 569–584.
  • 29. Jedliński Ł. Influence of the movement of involute profile gears along the off-line of action on the gear tooth position along the line of action direction. Eksploat i Niezawodn. 2021; 23: 736–744.
  • 30. Jedlinski L. Analysis of the influence of gear tooth friction on dynamic force in a spur gear. J Phys Conf Ser. 2021; 1736.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-02b555c2-2be1-4815-bec5-96ff8b15c05b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.