Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | nr 3 | 57--64
Tytuł artykułu

A Deep Learning-based Approach for Channel Estimation in Multi-access Multi-antenna Systems

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper studies estimating the channel state information at the end of receiver (CSIR) for multiple transmitters communicating with only one receiver so that the latter can decode the incoming signal more efficiently. The transmitters and the receiver are all equipped with multi-antennas and using orthogonal space-time block codes (OSTBC). An algorithm is developed based on deep learning for estimating multi-user multiple-input multiple-output (MU-MIMO) channels. The algorithm could estimate the CSIR using a single pilot block. The proposed convolutional neural network (CNN) architecture designed for this task begins with an input layer that accepts grayscale images, followed by six convolutional blocks for feature extraction and processing. The network concludes with a fully connected layer to output the estimated channel information. It is trained using a regression loss function to map input images to accurate channel information accurately. The performance of the proposed method is compared with classical methods like least square and subspace-based methods, including Capon and rank revealing QR (RRQR) methods. CNN achieved better performance in comparison with the reference. Computer simulations are included to validate the proposed method.
Słowa kluczowe
Wydawca

Rocznik
Tom
Strony
57--64
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
  • Tafila Technical University, Tafila, Jordan, aljaafah@udmercy.edu
  • University of Detroit Mercy, Detroit, USA
Bibliografia
  • [1] J. Kaur et al., "Machine Learning Techniques for 5G and Beyond", IEEE Access, vol. 9, pp. 23472-23488, 2021.
  • [2] C. Xu et al., "Two Decades of MIMO Design Tradeoffs and Reduced-complexity MIMO Detection in Near-capacity Systems", IEEE Access, vol. 5, pp. 18564-18632, 2017.
  • [3] Z. An et al., "Blind High-order Modulation Recognition for Beyond 5G OSTBC-OFDM Systems via Projected Constellation Vector Learning Network", IEEE Communications Letters, vol. 26, no. 1, pp. 84-88, 2022.
  • [4] R. Chataut and R. Akl, "Massive MIMO Systems for 5G and Beyond Networks - Overview, Recent Trends, Challenges, and Future Research Direction", Sensors, vol. 20, no. 10, art. no. 2753, 2020.
  • [5] C.M. Lau, "Performance of MIMO Systems Using Space Time Block Codes (STBC)", Open Journal of Applied Sciences, vol. 11, pp. 273-286, 2021.
  • [6] Y. Huo et al., "Technology Trends for Massive MIMO Towards 6G", Sensors, vol. 23, no. 13, art. no. 6062, 2023.
  • [7] H. Sadia, H. Iqbal, and R.A. Ahmed, "MIMO-NOMA with OSTBC for B5G Cellular Networks with Enhanced Quality of Service", 2023 10th International Conference on Wireless Networks and Mobile Communications (WINCOM), Istanbul, Turkiye, 2023 .
  • [8] M.G. Gaitán, G. Javanmardi, and R. Sámano-Robles, "Orthogonal Space-time Block Coding for Double Scattering V2V Links with LOS and Ground Reflections", Sensors, vol. 23, no. 23, art. no. 9594, 2023.
  • [9] R.-Y. Wei, K.-H. Lin, and J.-R. Jhang, "High-diversity Bandwidth-efficient Space-time Block Coded Differential Spatial Modulation", IEEE Open J. of the Communications Society, vol. 5, pp. 3331-3339, 2024 (https://doi.org/10.1109/OJCOMS.2024.3404427).
  • [10] J. Park, J. Lee, I. Ha, and S.-K. Han, "Mitigation of Dispersion-induced Power Fading in Broadband Intermediate-frequency-over-Fiber Transmission Using Space-time Block Coding", 2024 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, USA, 2024.
  • [11] J. Zhang et al., "Automatic Identification of Space-time Block Coding for MIMO-OFDM Systems in the Presence of Impulsive Interference", IEEE Transactions on Communications, 2024.
  • [12] V. Singh et al., "Diversity Combining Scheme for Time-varying STBC NGSO Multi-satellite Systems", IEEE Communications Letters, vol. 28, no. 4, pp. 882-886, 2024.
  • [13] M. Li, F. El Bouanani, S. Muhaidat, and M. Dianati, "Secure STBC-Aided NOMA in Cognitive IIoT Networks", IEEE Internet of Things Journal, vol. 11, no. 1, pp. 1256-1271, 2024.
  • [14] H. Jafarkhani and V. Tarokh, "Multiple Transmit Antenna Differential Detection from Generalized Orthogonal Designs", IEEE Transactions on Information Theory, vol. 47, no. 6, pp. 2626-2631, 2001.
  • [15] H. Li, X. Lu, and G.B. Giannakis, "Capon Multiuser Receiver for CDMA Systems with Space-time Coding", IEEE Transactions on Signal Processing, vol. 50, no. 5, pp. 1193-1204, 2002.
  • [16] D. Reynolds, X. Wang, and H.V. Poor, "Blind Adaptive Space-time Multiuser Detection with Multiple Transmitter and Receiver Antennas", IEEE Transactions on Signal Processing, vol. 50, no. 6, pp. 1261-1276, 2002.
  • [17] S. Zhou, B. Muquet, and G.B. Giannakis, "Subspace-based (semi-) Blind Channel Estimation for Block Precoded Space-time OFDM", IEEE Transactions on Signal Processing, vol. 50, no. 5, pp. 1215-1228, 2002.
  • [18] P. Stoica and G. Ganesan, "Space-time Block Codes: Trained, Blind, and Semi-blind Detection", Digital Signal Processing, vol. 13, no. 1, pp. 93-105, 2003 (https://doi.org/10.1016/S1051-2004(02)00009-X).
  • [19] S. Shahbazpanahi, A.B. Gershman and G.B. Giannakis, "Semi-blind Multi-user MIMO Channel Estimation Based on Capon and MUSIC Techniques", IEEE Int. Conference on Acoustics, Speech, and Signal Processing (ICASSP '05), Philadelphia, USA, 2005.
  • [20] S. Shahbazpanahi et al., "Minimum Variance Linear Receivers for Multi-access MIMO Wireless Systems with Space-time Block Coding", IEEE Transactions on Signal Processing, vol. 52, no. 12, pp. 3306-3313, 2004.
  • [21] S. Shahbazpanahi, A.B. Gershman, and J.H. Manton, "Closed-form Blind MIMO Channel Estimation for Orthogonal Space-time Block Codes", IEEE Transactions on Signal Processing, vol. 53, no. 12, pp. 4506-4517, 2005.
  • [22] G. Hiren et al., "Semiblind Multiuser MIMO Channel Estimators Using PM and RRQR Methods", 2009 Seventh Annual Communication Networks and Services Research Conference, Moncton, Canada, 2009.
  • [23] M. Qasaymeh, "Semi Blind Estimation for Multiuser MIMO Channel Using Orthogonal Space Time Block Coding", Journal of Theoretical and Applied Information Technology, pp. 37-42, 2010.
  • [24] H. Tataria et al., "6G Wireless Systems: Vision, Requirements, Challenges, Insights, and Opportunities", Proceedings of the IEEE, vol. 109, no. 7, pp. 1166-1199, 2021.
  • [25] N. Kato et al., "Ten Challenges in Advancing Machine Learning Technologies Toward 6G", IEEE Wireless Communications, vol. 27, no. 3, pp. 96-103, 2020.
  • [26] S. Liu, T. Wang, and S. Wang, "Toward Intelligent Wireless Communications: Deep Learning-based Physical Layer Technologies", Digital Communications and Networks, vol. 7, no. 4, pp. 589-597, 2021.
  • [27] M.M. Qasaymeh, "A Novel Machine Learning Approach for Blind Carrier Offset Estimation in OFDM Systems", International Journal of Electrical and Electronic Engineering & Telecommunications, vol. 13, no. 4, pp. 286-292, 2024.
  • [28] M.M. Qasaymeh and A.F. Aljaafreh, "Joint Time Delay and Frequency Estimation Based on Deep Learning", Journal of Communications, vol. 19, no. 1, pp. 1-6, 2024.
  • [29] P. Dong et al., "Deep CNN-based Channel Estimation for mmWave Massive MIMO Systems", IEEE Journal of Selected Topics in Signal Processing, vol. 13, no. 5, pp. 989-1000, 2019 (https://doi.org/10.1109/JSTSP.2019.2925975).
  • [30] M.M. Qasaymeh, A.A. Alqatawneh, and A.F. Aljaafreh, "Channel Estimation Methods for Frequency Hopping System Based on Machine Learning", Journal of Communications, vol. 19, no. 3, pp. 143-151, 2024.
  • [31] C.-J. Chun, J.-M. Kang, and I.-M. Kim, "Deep Learning-based Channel Estimation for Massive MIMO Systems", IEEE Wireless Communications Letters, vol. 8, no. 4, pp. 1228-1231, 2019.
  • [32] Z. Miyuan and C. Xibiao, "Channel Estimation for mmWave Massive MIMO Systems Based on Deep Learning", IRO Journal on Sustainable Wireless Systems, vol. 3, no. 4, pp. 226-241, 2022.
  • [33] M. Meenalakshmi, S. Chaturvedi, and V.K. Dwivedi, "Deep Learning-based Channel Estimation in 5G MIMO-OFDM Systems", 2022 8th International Conference on Signal Processing and Communication (ICSC), Noida, India, 2022.
  • [34] A.K. Nair and V. Menon, "Joint Channel Estimation and Symbol Detection in MIMO-OFDM Systems: A Deep Learning Approach Using Bi-LSTM", 2022 14th International Conference on Communication Systems & Networks (COMSNETS), Bangalore, India, 2022.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-029797b9-8dfe-4f44-b069-b017afba9fc4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.