Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 24, iss. 9 | 34--44
Tytuł artykułu

Increasing Water Quality and Scalability of Peatland Water with Double Flow Ultrafiltration in South Borneo

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Peatlands have ecological importance, human activities and climate change have created various environmental challenges for peatlands. One of the problems with peatlands is the degression in the quality of peat water, which has a negative impact on ecology and human health as well as the welfare of local communities who depend on peat water as a source of clean water. The problem of peat water processing lies in the need for large capacity, ease of maintenance, and water quality that meets standard criteria. The aim of this research is to evaluate the combination of filtration, absorption, and double flow ultrafiltration techniques, and compare them with single flow ultrafiltration techniques for treating peat water in the South Kalimantan region of Indonesia by looking at the amount of production and quality of water treatment results. This research proposes dual flow ultrafiltration as a solution for treating peat water on a large scale up to 2 times and results in better water quality than single flow ultrafiltration treatment. This is indicated by the percentage difference in TDS reduction of 19.5%, color of 23.1%, nitrite of 37.8%, and manganese of 69%. However, the dual flow ultrafiltration method still has a higher turbidity of around 60.65% and nitrate of about 15%. However, these water treatment results are still standardized by the Indonesia Minister of Health PERMENKES No.492/MENKES/PER/IV/2010.
Słowa kluczowe
Wydawca

Rocznik
Strony
34--44
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
  • Department of Computer Science, FMIPA, Lambung Mangkurat University, Banjarbaru, South Borneo, Indonesia
  • Department of Physic, FMIPA, Lambung Mangkurat University, Banjarbaru, South Borneo, Indonesia, totokwianto@ulm.ac.id
  • Department of Physic, FMIPA, Lambung Mangkurat University, Banjarbaru, South Borneo, Indonesia
autor
  • Department of Biology, FMIPA, Lambung Mangkurat University, Banjarbaru, South Borneo, Indonesia
  • Department of Public Health, Faculty of Medicine, Lambung Mangkurat University, Banjarbaru, South Borneo, Indonesia
Bibliografia
  • 1. Akhondi, E., Wicaksana, F., Fane, A.G. 2014. Evaluation of fouling deposition, fouling reversibility and energy consumption of submerged hollow fiber membrane systems with periodic backwash. Journal of Membrane Science, 452, 319–331. https://doi.org/10.1016/j.memsci.2013.10.031
  • 2. Ali, F., Lestari, D.L., Putri, M.D. 2021. Peat Water Treatment as an Alternative for Raw water in Peatlands Area. IOP Conference Series: Materials Science and Engineering, 1144(1), 012052. https://doi.org/10.1088/1757-899x/1144/1/012052
  • 3. Angel Martínez-Morales, M. 2005. Landscape patterns influencing bird assemblages in a fragmented neotropical cloud forest. Biological Conservation, 121(1), 117–126. https://doi.org/10.1016/j.biocon.2004.04.015
  • 4. Atmana Sutapa, I.D., Prihatinningtyas, E., Daryanta. 2020. IPAG60 as Alternative Solution to Provide Clean Water in Peatland Areas. IOP Conference Series: Earth and Environmental Science, 477(1). https://doi.org/10.1088/1755-1315/477/1/012030
  • 5. Devi, P., Istianti, D., Prawiro, S.Y., Bogi, N., Karna, A., Nursafa, I.A. 2019. Analisis Performansi Teknologi Akses LPWAN LoRa Antares Untuk Komunikasi Data End Node. Citee 2019, 22–26.
  • 6. Durham, B., Bourbigot, M.M., Pankratz, T. 2001. Membranes as pretreatment to desalination in wastewater reuse: Operating experience in the municipal and industrial sectors. Desalination, 138(1–3), 83–90. https://doi.org/10.1016/S0011-9164(01)00248-X
  • 7. Elma, M., Pratiwi, A.E., Rahma, A., Rampun, E.L.A., Mahmud, M., Abdi, C., Rosadi, R., Yanto, D.H.Y., Bilad, M.R. 2022. Combination of coagulation, adsorption, and ultrafiltration processes for organic matter removal from peat water. Sustainability (Switzerland), 14(1). https://doi.org/10.3390/su14010370
  • 8. Eltekova, N.A., Berek, D., Novák, I., Belliardo, F. 2000. Adsorption of organic compounds on porous carbon sorbents. Carbon, 38(3), 373–377. https://doi.org/10.1016/S0008-6223(99)00113-X
  • 9. Fan, M., Shibata, H. 2015. Simulation of watershed hydrology and stream water quality under land use and climate change scenarios in Teshio River watershed, northern Japan. Ecological Indicators, 50, 79–89. https://doi.org/10.1016/j.ecolind.2014.11.003
  • 10. Fezzi, C., Harwood, A.R., Lovett, A.A., Bateman, I.J. 2017. The environmental impact of climate change adaptation on land use and water quality. Building a Climate Resilient Economy and Society: Challenges and Opportunities, 27–40. https://doi.org/10.4337/9781785368455.00013
  • 11. Fu, F., Wang, Q. 2011. Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92(3), 407–418. https://doi.org/10.1016/j.jenvman.2010.11.011
  • 12. Guibai, L., Jiayu, T., Lu, Q. 2010. Purification process of third generation urban drinking water and zero pollution flux of ultrafiltration. J. Water & Wastewater Engineering, 8, 11–15.
  • 13. Hansen, M.C. 2013. High-Resolution Global Maps of. 850(November), 850–854. https://doi.org/10.1126/science.1244693
  • 14. Her, N., Amy, G., McKnight, D., Sohn, J., Yoon, Y. 2003. Characterization of DOM as a function of MW by fluorescence EEM and HPLC-SEC using UVA, DOC, and fluorescence detection. Water Research, 37(17), 4295–4303. https://doi.org/10.1016/S0043-1354(03)00317-8
  • 15. Hidalgo, A.M., Murcia, M.D. 2021. Membranes for water and wastewater treatment. Membranes, 11(4), 9–14. https://doi.org/10.3390/membranes11040295
  • 16. Ibrahim, H.S., Jamil, T.S., Hegazy, E.Z. 2010. Application of zeolite prepared from Egyptian kaolin for the removal of heavy metals: II. Isotherm models. Journal of Hazardous Materials, 182(1–3), 842–847. https://doi.org/10.1016/j.jhazmat.2010.06.118
  • 17. Jacangelo, J.G., DeMarco, J., Owen, D.M., Randtke, S.J. 1995. Selected processes for removing NOM: An overview. Journal / American Water Works Association, 87(1), 64–77. https://doi.org/10.1002/j.1551-8833.1995.tb06302.x
  • 18. Khayan, K., Sutomo, A.H., Rasyid, A., Puspita, W.L., Hariyadi, D., Anwar, T., Wardoyo, S., Sahknan, R., Aziz, A. 2022. Integrated Water Treatment System for Peat Water Treatment. Clean - Soil, Air, Water, 50(2), 1–9. https://doi.org/10.1002/clen.202100404
  • 19. Masese, O.F., Raburu, O.P., Mwasi, N.B., Etiegni, L. 2012. Effects of Deforestation on Water Resources: Integrating Science and Community Perspectives in the Sondu-Miriu River Basin, Kenya. New Advances and Contributions to Forestry Research. https://doi.org/10.5772/34373
  • 20. Miettinen, J., Shi, C., Liew, S.C. 2012. Two decades of destruction in Southeast Asia’s peat swamp forests. Frontiers in Ecology and the Environment, 10(3), 124–128. https://doi.org/10.1890/100236
  • 21. Notodarmojo, S., Mahmud, Larasati, A. 2017. Adsorption of natural organic matter (NOM) in peat water by local indonesia tropical clay soils. International Journal of GEOMATE, 13(38), 111–119. https://doi.org/10.21660/2017.38.30379
  • 22. Page, S.E., Rieley, J.O., Wüst, R. 2006. Chapter 7 Lowland tropical peatlands of Southeast Asia. Developments in Earth Surface Processes, 9(C), 145–172. https://doi.org/10.1016/S0928-2025(06)09007-9
  • 23. Parabi, A., Christiana, R., Octaviani, D., Zalviwan, M., Noerhartati, E., Muharlisiani, L.T. 2019. Neutralization, coagulation and filtration process in peat water. Journal of Physics: Conference Series, 1402(3). https://doi.org/10.1088/1742-6596/1402/3/033019
  • 24. Patunru, A.A. 2015. Access to safe drinking water and sanitation in Indonesia. Asia and the Pacific Policy Studies, 2(2), 234–244. https://doi.org/10.1002/app5.81
  • 25. Podgórni, E., Rząsa, M. 2014. Investigation of the effects of salinity and temperature on the removal of iron from water by aeration, filtration, and coagulation. Polish Journal of Environmental Studies, 23(6), 2157–2161. https://doi.org/10.15244/pjoes/24927
  • 26. Raghunandan, M.E., Sriraam, A.S. 2017. An overview of the basic engineering properties of Malaysian peats. Geoderma Regional, 11(February), 1–7. https://doi.org/10.1016/j.geodrs.2017.08.003
  • 27. Ritson, J.P., Bell, M., Brazier, R.E., Grand-Clement, E., Graham, N.J.D., Freeman, C., Smith, D., Templeton, M.R., Clark, J.M. 2016. Managing peatland vegetation for drinking water treatment. Scientific Reports, 6(July), 1–9. https://doi.org/10.1038/srep36751
  • 28. Simon, A., McDonald, J.A., Khan, S.J., Price, W.E., Nghiem, L.D. 2013. Effects of caustic cleaning on pore size of nanofiltration membranes and their rejection of trace organic chemicals. Journal of Membrane Science, 447, 153–162. https://doi.org/10.1016/j.memsci.2013.07.013
  • 29. Sukmara, R.B., Wahab, M.F., Ariyaningsih. 2022. Climate change in south Kalimantan ( Borneo ): assessment for rainfall and temperature. Journal of Infrastructure Planning and Development, 1(2), 51–59.
  • 30. Sutarto, J., Surjono, E. 2020. Association between Rainy Season and Diarrhea in 13- to 24-Month-Old Toddlers. Majalah Kedokteran Bandung, 52(4), 193–198. https://doi.org/10.15395/mkb.v52n4.2139
  • 31. Syafalni, S., Abustan, I., Dahlan, I., Wah, C.K., Umar, G. 2012. Treatment of dye wastewater using granular activated carbon and zeolite filter. Modern Applied Science, 6(2), 37–51. https://doi.org/10.5539/mas.v6n2p37
  • 32. Tolosa, A.A., Tolossa, T.T. 2021. Recent and Future Trend Analysis of Inter-Seasonal to Seasonal Rainfall and Temperature to Climate Change and Variability in Dire Dawa city Administration, Ethiopia. Environ Pollut Climate Change, 5(1), 1–20.
  • 33. Tonks, A.J., Aplin, P., Beriro, D.J., Cooper, H., Evers, S., Vane, C.H., Sjögersten, S. 2017. Impacts of conversion of tropical peat swamp forest to oil palm plantation on peat organic chemistry, physical properties and carbon stocks. Geoderma, 289, 36–45. https://doi.org/10.1016/j.geoderma.2016.11.018
  • 34. Vedavyasan, C.V. 2007. Pretreatment trends - an overview. Desalination, 203(1–3), 296–299. https://doi.org/10.1016/j.desal.2006.04.012
  • 35. Xiaoying F.X.W., X.W. 2017. Application of ultrafiltration membrane technology in water treatment of environmental protection projects. Policy Research & Exploration, 11(95), 6.
  • 36. Yallop, A.R., Clutterbuck, B. 2009. Land management as a factor controlling dissolved organic carbon release from upland peat soils 1: Spatial variation in DOC productivity. Science of the Total Environment, 407(12), 3803–3813. https://doi.org/10.1016/j.scitotenv.2009.03.012
  • 37. Youcai, Z. 2018. Leachate Treatment Engineering Processes. In Pollution Control Technology for Leachate from Municipal Solid Waste. https://doi.org/10.1016/b978-0-12-815813-5.00005-x
  • 38. Zheng, G., Ye, H., Zhang, Y., Li, H., Lin, L., Ding, X. 2015. Removal of Heavy Metal in Drinking Water Resource with Cation-Exchange Resins (Type 110-H) Mixed PES Membrane Adsorbents. Journal of Hazardous, Toxic, and Radioactive Waste, 19(2), 1–6. https://doi.org/10.1061/(asce)hz.2153-5515.0000229
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-02891a96-916e-4aef-b697-f32530dd035b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.