Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | Vol. 21, no. 4 | 482--490
Tytuł artykułu

Phototherapy in the Treatment of Diabetic Foot - A Preliminary Study

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The first part of the publication presents a substantively insightful literature study on the essence and effects of light waves on wound healing in living organisms, including the use of phototherapy in the treatment of the diabetic foot. A knitted textile dressing was designed and manufactured for phototherapy of patients with diabetes suffering from diabetic foot syndrome (DFS). The proposed solution is intended for the treatment of dermal tissues within the patient's foot affected because of diabetic disease at an early stage. Thus, the use of a knitted dressing with incorporated fiber optic structures and powered by a semiconductor laser emitting a 405 nm light wave from its entire surface would prevent further anomalies of the patient's tissues and help to avoid surgical intervention.
Wydawca

Rocznik
Strony
482--490
Opis fizyczny
Bibliogr. 52 poz.
Twórcy
autor
  • Lodz University of Technology, Faculty of Material Technologies and Textile Design, Poland
  • Medical University of Lodz, Poland
autor
  • Medical University of Lodz, Poland
Bibliografia
  • [1] Główny Urząd Statystyczny/Infografiki, widżety/Infografiki/Infografika - Cukier w Polsce. Retrieved June 25, 2021. Web site: https://stat.gov.pl/infografiki-widzety/infografiki/infografika-swiatowy-dzien-walki-z-cukrzyca-14-listopada,46,3.html
  • [2] Global report on diabetes. Retrieved June 25, 2021. Web site: https://www.who.int/publications/i/item/9789241565257.
  • [3] Małecki, R., Rosiński, K., Adamiec, R. (2014). Etiological factors of infections in diabetic foot syndrome – Attempt to define optimal empirical therapy. Advances in Clinical Experimental Medicine, 23(1), 39–48.
  • [4] Lipsky, B. (2004). A report from the international consensus on diagnosing and treating the infected diabetic foot. Diabetes Metabolism Research and Reviews, 20, 68–77.
  • [5] Emilia, R., Sołdaj-Bukszyńska, K., Kowalik, M., Lis, B., Dzida, G. (2017). Diabetic foot syndrome as an interdisciplinary problem. Journal of Education, Health and Sport, 7(8), 576–582, eISSN 2391-8306.
  • [6] Formosa, C., Cassar, K., Gatt, A., Mizzi, A., Mizzi, S., et al. (2013). Hidden dangers revealed by misdiagnosed peripheral arterial disease using ABPI measurement. Diabetes Research and Clinical Practice, 102(2), 112–116.
  • [7] Popławska-Kita, A. (2016). Dermatologia geriatryczna. T. 2. Pod red. Andrzeja Kaszuby, Jacka Szepietowskiego, Zygmunta Adamskiego, rozdział w książce, strony, 329–343.
  • [8] Wang, H. T., Yuan, J. Q., Zhang, B., Dong, M. L., Mao, C., et al. (2017). Phototherapy for treating foot ulcers in people with diabetes. Cochrane Database of Systematic Reviews, 6. John Wiley and Sons Ltd, Jun. 28, 2017, doi: 10.1002/14651858.CD011979.pub2.
  • [9] de Sousa, A. P. C., Santos, J. N., dos Reis, J. A., Ramos, T. A., de Souza, J., et al. (2010). Effect of LED phototherapy of three distinct wavelengths on fibroblasts on wound healing: A histological study in a rodent model. Photomedicine and Laser Surgery, 28(4), 547–552. doi: 10.1089/pho.2009.2605
  • [10] Al-Watban, F.A.H., Andres, B.L. (2003). PolychromaticLED therapy in burn healing of non-diabetic and diabetic rats. Journal of Clinical Laser Medicine & Surgery, 21, 249–252.
  • [11] Dungel, P., Hartinger, J., Chaudary, S., Slezak, P., Hofmann, A., et al. (2014). Low level light therapy by LED of different wavelength induces angiogenesis and improves ischemic wound healing. Lasers in Surgery and Medicine, 46(10), 773–780. doi: 10.1002/lsm.22299.
  • [12] Al-Watban, F.A.H., Delgado, G.D. (2005). Burn healing with a diode laser: 670 nm at different doses as compared to a placebo group. Photomedicine and Laser Surgery, 23, 245–250.
  • [13] Demidova-Rice, T. N., Salomatina, E. V., Yaroslavsky, A. N., Herman, I. M., Hamblin, M. R. (2007). Low-level light stimulates excisional wound healing in mice. Lasers in Surgery and Medicine, 39(9), 706–715. doi: 10.1002/lsm.20549.
  • [14] Karu, T. I., Kolyakov, S. F. (2005). Exact action spectra for cellular responses relevant to phototherapy. Photomedicine and Laser Surgery, 2005;23(4):355–361.
  • [15] Minatel, D. G., Frade, M. A. C., França, S. C., Enwemeka, C. S. (2009). Phototherapy promotes healing of chronic diabetic leg ulcers that failed to respond to other therapies. Lasers in Surgery and Medicine, 41(6), 433–441. doi: 10.1002/lsm.20789.
  • [16] DeLellis, S. L., Carnegie, D. H., Burke, T. J. (2005). Improved sensitivity in patients with peripheral neuropathy. Effects of monochromatic infrared photo energy. Journal of the American Podiatric Medical Association, 2005;95:143–147.
  • [17] Al-Watban, F. A. H., Andres, B. L. (2006). Polychromatic LED in Oval Full-Thickness Wound Healing in Non-diabetic and Diabetic Rats. Photomedicine and Laser Surgery, 24(1), 10–16. doi: 10.1089/pho.2006.24.10.
  • [18] Lee, P., Kim, K., Kim, K. (1993). Effects of low incident energy levels of infrared laser irradiation on healing of infected open skin wounds in rats. Laser Therapy, 5, 59–64.
  • [19] Al-Watban, F. A. H. (2009). Laser therapy converts diabetic wound healing to normal healing. Photomedicine and Laser Surgery, 27(1), 127–135.
  • [20] Mendez, T. M., Pinheiro, A. L., Pacheco, M. T., Nascimento, P. M., Ramalho, L. M. (2004). Dose and wavelength of laser light have influence on the repair of cutaneous wounds. Journal of Clinical Laser Medicine & Surgery, 22, 19–25.
  • [21] Santos, N. R. S., Dos Santos, J. N., Dos Reis, J. A., Oliveira, P. C., de Sousa, A. P. C., et al. (2010). Influence of the use of laser phototherapy (λ660 or 790 nm) on the survival of cutaneous flaps on diabetic rats. Photomedicine and Laser Surgery, 28(4), 483–488.
  • [22] Caetano, K. S., Frade, M. A. C., Minatel. D. G., Santana, L. A., Enwemeka. C. S. (2009). Phototherapy improves healing of chronic venous ulcers. Photomedicine and Laser Surgery, 27, 111–118.
  • [23] Rohringer, S., Holnthoner, W., Chaudary, S., Slezak, P., Priglinger, E., et al. (2017). The impact of wavelengths of LED light-therapy on endothelial cells. Scientific Reports, 7(1), 1–11, doi: 10.1038/s41598-017-11061-y.
  • [24] Chaves, M. E. A., Piancastelli A. C. C., de Araújo A. R., Pinotti M. (2014). Effects of low-power light therapy on wound healing: LASER × LED. Anais Brasileiros de Dermatologia, 89(4). Sociedade Brasileira de Dermatologia, 616–623. doi: 10.1590/abd1806-4841.20142519.
  • [25] MedX Health. About phototherapy. Web site: www.medxhealth.com/Our-Products/Phototherapy/overview.aspx (accessed 27 May 2016). - Szukaj w Google. https://www.google.com/search?q=MedX+Health.+About+phototherapy.+www.medxhealth.com%2FOurProducts%2FPhototherapy%2Foverview.aspx+(accessed+27+May+2016).&oq=MedX+Health.+About+phototherapy.+www.medxhealth.com%2FOurProducts%2FPhototherapy%2Foverview.aspx+(accessed+27+May+2016).&aqs=chrome..69i57.479j0j4&sourceid=chrome&ie=UTF-8 (accessed June 25, 2021).
  • [26] El-Deen, H. B., Fahmy, S., Ali, S. A., El-Sayed, W. M. (2014). Polarized light versus light-emitting diode on healing of chronic diabetic foot ulcer. Romanian Journal of Biophysics, 24(2):1–15.
  • [27] Beckmann, K. H., Meyer-Hamme, G., Schröder, S. (2014). Low level laser therapy for the treatment of diabetic foot ulcers: A critical survey, Hindawi Publishing Corporation Evidence-Based Complementary and Alternative Medicine, Article ID 626127. doi: 10.1155/2014/626127.
  • [28] Al-Watban, F. A. H., Andres, B. L. (2008). Low power laser therapy for wound and burn healing. Laser Medicine Feature-Arab Health Magazine, 3, 48–51.
  • [29] Al-Watban, F. A. H., Zhang, X. Y., Andres, B. L. (2007). Low level laser therapy enhances wound healing in diabetic rats: A comparison of different lasers. Photomedicine and Laser Surgery, 25, 72–77.
  • [30] Bayat, M., Vasheghani, M. M., Razavi, N., Taheri, S., Rakhshan, M. (2005). Effect of low-level laser therapy on the healing of second-degree burns in rats: a histological and microbiological study. Journal of Photochemistry and Photobiology B: Biology, 78, 171–177.
  • [31] Gaida, K., Koller, R., Isler, C., et al. (2004). Low level laser therapy - A conservative approach to the burn scar? Burns, 30, 362–367.
  • [32] Sommer, A. P., Pinheiro, A. L. B., Mester, A. R., Franke, R. P., Whelan, H. T. (2001). Biostimulatory windows in low intensity laser activation: Lasers, scanners and nasa's light-emitting diode array system. Journal of Clinical Laser Medicine & Surgery, 19, 29–34.
  • [33] Webb, C., Dyson, M. (2003). The effect of 880 nm low level laser energy on human fibroblast cell numbers: A possible role in hypertrophic wound healing. Journal of Photochemistry and Photobiology B: Biology, 70:39–44.
  • [34] Ribeiro, M. S., da Silva, D. F., de Araujo. C E., De Oliveira, S. F., Pelegrini, C. M. R., et al. (2004). Effects of low-intensity polarized visible laser radiation on skin burns: a light microscopy study. Journal of Clinical Laser Medicine & Surgery, 22, 59–66.
  • [35] Herascu, N., Velciu, B., Calin, M., Savastru, D., Talianu, C. (2005). Low-level laser therapy (LLLT) efficacy in postoperative wounds. Photomedicine and Laser Surgery, 23, 70–73.
  • [36] Wong-Riley, M. T. T., Bai, X., Buchmann, E., Whelan, H. T. (2001). Light-emitting diode treatment reverses the effect of TTX on cytochrome oxidase in neurons. NeuroReport, 12, 3033–3037.
  • [37] Schindl, A., Schindl, M., Schön, H., Knobler, R., Havelec, L., Schindl, L. (1998). Low-intensity laser irradiation improves skin circulation in patients with diabetic microangiopathy. Diabetes Care, 21, 580–584.
  • [38] Minatel, D. G., Frade, M. A. C., França, S. C., Enwemeka, C. S. (2009). Phototherapy promotes healing of chronic diabetic leg ulcers that failed to respond to other therapies. Lasers in Surgery and Medicine, 41(6), 433–441.
  • [39] Zhou, J.-D., Luo, C.-Q., Xieetal, H.-Q. (2008). Increasedexpressionofheart shock protein 70 and heat shock factor 1 in chronic dermalulcer tissues treated with laser-aided therapy. Chinese Medical Journal, 121(14), 1269–1273.
  • [40] Landau, Z., Migdal, M., Lipovsky, A., Lubart, R. (2011). Visible light-induced healing of diabetic or venous foot ulcers:a placebo-controlled double-blind study. Photomedicine and Laser Surgery, 29(6), 399–404.
  • [41] Romaniuk, R., Romaniuk, I. (1983). Światłowody w medycynie. PROBLEMY. 1983, 17–20. Ryszard Romaniuk, Irena U. Romaniuk, Światłowody w medycynie; PROBLEMY, Miesięcznik popularnonaukowy, nr 07, 1984.
  • [42] Gryko, Ł., Zajac, A. J. (2016). Wykorzystanie diod LED w medycynie (The use of LEDs in medicine).
  • [43] Sekhejane, P. R., Houreld, N. N., Abrahamse, H. (2011). Irradiation at 636 nm positively affects diabetic wounded and hypoxic cells in vitro. Photomedicine and Laser Surgery, 29(8), 521–530.
  • [44] Patent application CN208958511U LIGHT dressing.
  • [45] Patent application WO2020/064937 A1 Optical fibers for optically sensing through wound dressings.
  • [46] Quandt, B. M., Pfister, M. S., Lubben, J. F., Spano, F., Rossi, R. M., et al. (2017). POF-yarn weaves: controlling the light out-coupling of wearable phototherapy devices. Biomedical Optics Express, 8, 4316–4330.
  • [47] Zeng, W. (2015). Polymer optical fiber for smart textiles. In: Tao, X. (Ed.). Handbook of smart textiles. Springer Singapore (Singapore). pp. 109–125.
  • [48] Kumar, L. A. (2013). Vigneswaran: Electronics in textile and clothing. Design, Products and Application, ISBN-13 : 978-1498715508.
  • [49] Hilly, S. M.. Al-Khalee, Z. E. L., Alrubaye, A. F. (2011). Fiber optic sensor for measuring rotation, Al-Nahrain Journal of Science, 14(4), 66–72.
  • [50] Łada-Tondyra, E., Jakubas, A. (2018). Nowoczesne zastosowania systemów tekstronicznych. Przegląd Elektrotechniczny, ISSN 0033-2097, R. 94 NR 12/2018.
  • [51] Nowak, I. (2022). Innovative knitted fabrics containing lateral propagation optical fibers designed for children with autism - Preliminary Study. Fibers and Textile in Easter Europe.
  • [52] Cysewska-Sobusiak, A.. Prokop, D., Jukiewicz, M., Tendencje Rozwojowe, I. (2009). Obszary Zastosowań Technik Światłowodowych, Poznań University of Technology, Academic Heimdal E.J., Flat knitting of a light emitting textile with optical fibers. Autex Research Journal, 9(2), 61–65.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-0262c864-e265-42ea-aec3-84b40ce85dbc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.