Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 60, iss. 4 | art. no. 192663
Tytuł artykułu

Variability of lead-zinc sulfide ore slurry rheological properties and its influence on flotation conditions

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We investigated how the rheological characteristics of a flotation slurry change in response to variations in mineral species, slurry concentration, and particle size; slurry pH; and collector and rheological control reagent concentrations using slurries containing galena, sphalerite, quartz, and kaolinite. The results indicate that reducing particle size and increasing slurry concentration leads to varying degrees of increase in apparent viscosity and yield stress. At the same particle size, the slurry exhibits the following order of apparent viscosity and yield stress: kaolinite > galena > sphalerite > quartz. In addition, as the slurry’s apparent viscosity and yield stress increase, the rheology decreases, creating progressively unfavorable conditions for the flotation of lead, zinc, and other valuable minerals. Furthermore, changes in pH have no significant effect on the slurry’s rheology when the slurry is comprised of gangue mineral. Moreover, galena and sphalerite depict particle agglomeration in the slurry. Ultimately, the addition of sodium silicate as a rheological control reagent substantially enhances the slurry’s rheological properties. This results in a system where problematic minerals like kaolinite are more effectively dispersed, thereby promoting efficient lead-zinc mineral flotation. Regarding the flotation of lead sulfide and zinc minerals, the addition of kaolinite raises the apparent viscosity of the mixed slurry, hindering the flotation of the valuable minerals. Conversely, quartz lowers the apparent viscosity aiding the flotation separation process. Understanding the relationship between flotation conditions and the pulp’s rheological properties can provide valuable guidance for subsequent flotation tests.
Wydawca

Rocznik
Strony
art. no. 192663
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
autor
  • School of Civil and Resources Engineering,University of Science and Technology Beijing,Beijing 100083,China, luo_kh@bgrimm.com
  • State Key Laboratory of Mineral Processing Science and Technology, BGRIMM Technology Group, Beijing 102628, China
  • State Key Laboratory of Mineral Processing Science and Technology, BGRIMM Technology Group, Beijing 102628, China
autor
  • School of Civil and Resources Engineering,University of Science and Technology Beijing,Beijing 100083,China
Bibliografia
  • BARNES H.A., HUTTON J.F., WALTERS K., 1989. An introduction to rheology. Journal of Non-Newtonian Fluid Mechanics, 3: 199.
  • VERLAG D.S., ISSN D., 1979. Shear viseosity of settling suspensions. Rheologica Acta, 296(18): 289–296.
  • BOGER D.V., 2000. Rheology and the minerals industry. Mineral Procesing and Extractive Metallurgy Review, 20(1): 1-25.
  • FARROKHPAY S., MORRIS G.E., FORNASIERO D., ET AL., 2005. Influence of polymer functional group architecture on titania pigment dispersion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 253(1-3): 183-191.
  • BECKER M., YORATH G., NDLOVU B., ET AL, 2013.. A rheological investigation of the behaviour of two Southern African platinum ores. Minerals Engineering, 49: 92-97.
  • SHI F N, NAPIER-MUNN T J., 2002. Effects of slurry rheology on industrial grinding performance [J]. International Journal of Mineral Processing, 65(3-4): 125-140.
  • HE M, WANG Y, FORSSBERG E., 2004. Slurry rheology in wet ultrafine grinding of industrial minerals: A review[J]. Powder Technology, 147(1–3): 94–112.
  • WANG L, LI C., 2020, A brief review of pulp and froth rheology in mineral flotation. Journal of Chemistry, 2020: 1-16.
  • SONG S, LOPEZ-VALDIVIESO A, REYES-BAHENA J L, ET AL, 2001. Floc flotation of galena and sphalerite fines. Minerals Engineering, 14(1): 87-98.
  • ZENG G, ZHU Y, CHEN W., 2023. A Brief Review of Micro-Particle Slurry Rheological Behavior in Grinding and Flotation for Enhancing Fine Mineral Processing Efficiency[J]. Minerals, 13(6): 792.
  • FARROKHPAY S., 2012. The importance of rheology in mineral flotation: A review. Minerals Engineering, 36-38: 272-278.
  • ZHAO F G., 2007. The present situation of the concentration of Pb-Zn ore. Non-ferrous Mining And Metallurgy, 23(6): 20-25.
  • FENG Q, WEN S., 2017. Formation of zinc sulfide species on smithsonite surfaces and its response to flotation performance[J]. Journal of Alloys and Compounds, 709: 602-608.
  • CHEN Y, CHEN J, GUO J., 2010. A DFT study on the effect of lattice impurities on the electronic structures and floatability of sphalerite[J]. Minerals engineering, 23(14): 1120-1130.
  • HINTIKKA V V, LEPPINEN J O., 1995. Potential control in the flotation of sulphide minerals and precious metals[J]. Minerals Engineering, 8(10): 1151-1158.
  • MUSTER T H, PRESTIDGE C A., 1995. Rheological investigations of sulphide mineral slurries. Minerals Engineering, 8(12): 1541-1555.
  • CRUZ N, FORSTER J, BOBICKI., 2019. Slurry Rheology in Mineral Processing Unit Operations-A Critical Review[J]. The Canadian Journal of Chemical Engineering, 76.
  • DAS K, KELLY N, MUIR M., 2010. Rheological behaviour of lateritic smectite ore slurries[ Minerals Engineering, 24(7).
  • MUELLER, S., LLEWELLIN, B., E.W., 2009. The rheology of suspensions of solid particles. Proc.R. Soc. 39, 291–300.
  • NESTOR CRUZ, JOHN FORSTER, ERIN R. BOBICKI., 2019. Slurry rheology in mineral processing unit operations: A critical review.The CanadianJournal of Chemical Engineering, 2019 (7).
  • GUSTAFSSON J, MIKKOLA P, JOKINEN M, ET AL., 2000. The influence of pH and NaCl on the zeta potential and rheology of anatase dispersions[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects, 175(3): 349-359.
  • CHEN X, PENG R., 2008. Pb-Zn metal resources condition and strategy for Pb-Zn metals industry sustainable development in China. Non-ferrous Metals, (3):129-132.
  • GUPTA V, HAMPTON M A, STOKES J R, ET AL., 2011. Particle interactions in kaolinite suspensions and corresponding aggregate structures. Journal of Colloid and Interface Science, 359(1): 95-103.
  • WANG C, ZHANG Q, MAO S, ET AL., 2020. Effects of fine minerals on pulp rheology and the flotation of diaspore and pyrite mixed ores. Minerals, 10(1): 60.
  • MONTALTI M, FORNASIERO D, RALSTON J., 1991. Ultraviolet-visible spectroscopic study of the kinetics of adsorption of ethyl xanthate on pyrite. Journal of Colloid and Interface Science, 143( 2) : 440-450.
  • PAPO A, PIANI L, RICCERI R., 2002. Sodium tripolyphosphate and polyphosphate as dispersing agents for kaolin suspensions: rheological characterization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 201(1-3): 219-230.
  • CRUZ N, PENG Y, ELAINE W., 2015. Interactions of clay minerals in copper-gold flotation: Part 2 - Influence of some calcium bearing gangue minerals on the rheological behaviour. International Journal of Mineral Processing, 141.
  • ZHANG M, PENG Y., 2015. Effect of clay minerals on pulp rheology and the flotation of copper and gold minerals. Minerals Engineering, 70: 8-13.
  • CHEN, PENG., 2018. Managing clay minerals in froth flotation—A critical review.Informa UK Limited;Taylor & Francis.
  • ZHANG L, GAO J, KHOSO S A, ET AL., 2021. A reagent scheme for galena/sphalerite flotation separation: Insights from first-principles calculations. Minerals Engineering, 167: 106885.
  • SHANG Y, SUN C., 2023. Effects of physical and physico-chemical factors on pulp rheology of smithsonite. Physicochemical Problems of Mineral Processing, 59.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-024656f4-1d4b-419f-875d-fc9fa30165a3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.