Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2024 | Vol. 69, nr 6 | 362--370
Tytuł artykułu

Chitosan/Arabic gum/ZnO bionanocomposite as a novel antibacterial agent

Treść / Zawartość
Warianty tytułu
PL
Bionanokompozyt chitozan/guma arabska/ZnO jako nowy materiał antybakteryjny
Języki publikacji
EN
Abstrakty
EN
The synthesis conditions of chitosan/Arabic gum /zinc oxide nanocomposite were optimized using the Taguchi method to obtain antibacterial properties. FT-IR, XRD, FESEM, EDX, TEM, UV/VIS and TGA techniques were used to characterize the nanocomposite. Nanocomposite C3 (1 mg/mL chitosan, 4.5 mg/mL Arabic gum and 8 mg/mL zinc oxide), C7 (3 mg/mL chitosan, 5.1 mg/mL Arabic gum and 8 mg/mL zinc oxide) and C9 (3 mg/mL chitosan, 4.5 mg/mL Arabic gum and 4 mg/mL zinc oxide) had the best antibacterial properties against S. mutans. TGA showed that ZnO improved the thermal stability of the nanocomposite. Such materials can be used as antibacterial agents.
PL
Przy użyciu metody Taguchi zoptymalizowano warunki syntezy nanokompozytu chitozan/guma arabska/tlenek cynku umożliwiające uzyskanie właściwości antybakteryjnych. Do scharakteryzowania nanokompozytu zastosowano techniki FT-IR, XRD, FESEM, EDX, TEM, UV/VIS i TGA. Nanokompozyt C3 (1 mg/mL chitozanu, 4,5 mg/mL gumy arabskiej i 8 mg/mL tlenku cynku), C7 (3 mg/mL chitozanu, 5,1 mg/mL gumy arabskiej i 8 mg/mL tlenku cynku) i C9 (3 mg/mL chitozanu, 4,5 mg/mL gumy arabskiej i 4 mg/mL tlenku cynku) miał najlepsze właściwości antybakteryjne wobec S. mutans. Metodą TGA wykazano, że ZnO poprawia stabilność termiczną nanokompozytu. Tego typu materiały mogą być stosowane jako środki antybakteryjne.
Wydawca

Czasopismo
Rocznik
Strony
362--370
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
  • Division of Dental Biomaterials, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah 54658, Iran
  • Advanced Dental Science and Technology Research Center, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah 38647, Iran
  • Advanced Dental Science and Technology Research Center, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah 38647, Iran
  • Department of Oral and Maxillofacial Surgery, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah 54658, Iran
  • Department of Oral and Maxillofacial Surgery, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah 54658, Iran
  • Faculty of Health and Life Sciences, INTI International University, Nilai 71800, Malaysia
  • Department of Oral and Maxillofacial Radiology, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah 54658, Iran, nikkerdarnafiseh@gmail.com
Bibliografia
  • [1] Taran M., Etemadi S., Safaei M.: Journal of Applied Polymer Science 2017, 134(12), 44613. https://doi.org/10.1002/app.44613
  • [2] Hochvaldová L., Večeřová R., Kolář M. et al.: Nanotechnology Reviews 2022, 11, 1115. https://doi.org/10.1515/ntrev-2022-0059
  • [3] Mao M., Zhang W., Huang Z. et al.: International Journal of Nanomedicine 2021, 16, 7727. https://doi.org/10.2147/IJN.S303521
  • [4] Toprakcioglu Z., Wiita E.G., Jayaram A.K. et al.: ACS Applied Materials and Interfaces 2023, 15(8), 10452. https://doi.org/10.1021/acsami.2c21013
  • [5] Han C., Romero N., Fischer S. et al.: Nanotechnology Reviews 2017, 6(5), 383. https://doi.org/10.1515/ntrev-2016-0054
  • [6] Chelu M., Moreno J. C., Atkinson I. et al.: International Journal of Biological Macromolecules 2022, 211, 410. https://doi.org/10.1016/j.ijbiomac.2022.05.070
  • [7] Nikdel M., Rajabinejad H., Yaghoubi H. et al.: ECS Journal of Solid-State Science and Technology 2021, 10(5), 057003. https://doi.org/10.1149/2162-8777/abfc26
  • [8] Visnuvinayagam S., Murthy L.N., Parvathy U. et al.: FEMS Microbiology Letters 2021, 368, 210. https://doi.org/10.1093/femsle/fnaa210
  • [9] Sharkawy A., Casimiro F.M., Barreiro M.F. et al.: International Journal of Biological Macromolecules 2020, 147, 150. https://doi.org/10.1016/j.ijbiomac.2020.01.057
  • [10] Sharkawy A., Barreiro M.F., Rodrigues A.E.: Carbohydrate Polymers 2019, 224, 115190. https://doi.org/10.1016/j.carbpol.2019.115190
  • [11] Ghorbani F., Gorji P., Mobarakeh S.M. et al.: Journal of Nanomaterials 2022, 7255181. https://doi.org/10.1155/2022/7255181
  • [12] Safaei M., Taran M., Imani M.M. et al.: Polish Journal of Chemical Technology 2019, 21(4), 116. https://doi.org/10.2478/pjct-2019-0047
  • [13] Imani M.M., Kiani M., Rezaei F. et al.: Ceramics International 2021, 47(12), 33398. https://doi.org/10.1016/j.ceramint.2021.08.246
  • [14] Safaei M., Moghadam A.: Materials Today Communications 2022, 31, 103698. https://doi.org/10.1016/j.mtcomm.2022.103698
  • [15] Getie S., Belay A., Chandra Reddy A.R. et al.: Journal of Nanomedicine and Nanotechnology 2017, 8, 004. http://dx.doi.org/10.4172/2157-7439.S7-001
  • [16] Gao W., Zhang L.: Nature Reviews Microbiology 2021, 19, 5. https://doi.org/10.1038/s41579-020-00469-5
  • [17] Djearamane S., Loh Z.C., Lee J.J. et al.: Frontiers in Pharmacology 2022, 13, 891304. https://doi.org/10.3389/fphar.2022.891304
  • [18] Ismail A.M., Menazea A.A., Kabary H.A. et al.: Journal of Molecular Structure 2019, 1196, 332. https://doi.org/10.1016/j.molstruc.2019.06.084
  • [19] Sudatta B.P., Sugumar V., Varma R. et al.: International Journal of Biological Macromolecules 2020, 163, 423. https://doi.org/10.1016/j.ijbiomac.2020.06.291
  • [20] Abu-Dalo M.A., Othman A.A., Al-Rawashdeh N.A.: International Journal of Electrochemical Science 2012, 7, 9303–9324. https://doi.org/10.1016/S1452-3981(23)16199-2
  • [21] Rao Y.N., Banerjee D., Datta A. et al.: Radiation Physics and Chemistry 2010, 79(12), 1240. https://doi.org/10.1016/j.radphyschem.2010.07.004
  • [22] Devi P.G., Velu A.S.: Journal of Theoretical and Applied Physics 2016, 10, 233. https://doi.org/10.1007/s40094-016-0221-0
  • [23] Souza A.P., Neves J.G., Navarro da Rocha D. et al.: Journal of Biomaterials Applications 2023, 37(9), 1605. https://doi.org/10.1177/08853282231155570
  • [24] Getie S., Belay A., Chandra Reddy A.R. et al.: Journal of Nanomedicine and Nanotechnology 2017, 8, 004. http://dx.doi.org/10.4172/2157-7439.S7-001
  • [25] Jobe M.C., Mthiyane D.M., Mwanza M. et al.: Heliyon 2022, 8(12), e12243. https://doi.org/10.1016/j.heliyon.2022.e12243
  • [26] Bharathi D., Ranjithkumar R., Chandarshekar B. et al.: International Journal of Biological Macromolecules 2019, 129, 989. https://doi.org/10.1016/j.ijbiomac.2019.02.061
  • [27] Rodríguez‐Rodríguez R., Velasquillo‐Martínez C., Knauth P. et al.: Journal of Biomedical Materials Research Part A 2020, 108, 81. https://doi.org/10.1002/jbm.a.36794
  • [28] Abdeen Z.I., El Farargy A.F., Negm N.A.: Journal of Molecular Liquids 2018, 250, 335. https://doi.org/10.1016/j.molliq.2017.12.032
  • [29] Mostafa M.H., Elsawy M.A., Darwish M.S. et al.: Materials Chemistry and Physics 2020, 248, 122914. https://doi.org/10.1016/j.matchemphys.2020.122914
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-0215232b-17cf-42ac-91ab-28d7706c0776
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.