Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | Vol. 23 | 115--120
Tytuł artykułu

String-beam under moving inertial load

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Konferencja
Symposium Vibrations In Physical Systems (23 ; 28-31.05.2008 ; Będlewo koło Poznania ; Polska)
Języki publikacji
EN
Abstrakty
EN
The paper deals with the original analytical-numerical approach to the Bernoulli-Euler beam with additional tensile effect under a moving inertial load. The authors applied the 2nd kind Lagrange equation to derive a motion differential equation of the problem. The moving mass can travel through the string-beam with a whole range constant speed, also overcritical. The analytical solution requires a numerical calculation in the last stage and is called a semi-analytical one.
Słowa kluczowe
Wydawca

Rocznik
Tom
Strony
115--120
Opis fizyczny
Bibliogr. 15 poz., 1 rys., wykr.
Twórcy
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Świętokrzyska 21, 00-049 Warsaw, Poland
autor
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Świętokrzyska 21, 00-049 Warsaw, Poland
Bibliografia
  • 1. C.E. Inglis. A Mathematical Treatise on Vibrations in Railway Bridges. Cam¬bridge University Press, 1934.
  • 2. A. Schallenkamp. Schwingungen von Trägern bei bewegten Lasten. Arch, of Appl. Mech. (Ingenieur Archiv), 8(3):182-198, June 1937.
  • 3. Renaudot. Etude de l'influence des charges en mouvement sur la resistance, des ponts métallique a poutres droites. Annales des Ponts et Chausses, 1:145, 1861.
  • 4. C.E. Smith. Motion of a stretched string carrying a moving mass particle. J. Appl. Mech., 31(l):29-37, 1964.
  • 5. J. Panovko. Historical outline of the theory of dynamic influence of moving load (in Russian). Engineering Academy of Air Forces, 17:8-38, 1948.
  • 6. N.Z. Jakushev. Certain problems of dynamics of the beam under moving load (in Russian). Publisher of the Kazan Univ., 12:199-220, 1974.
  • 7. A.S. Dmitrijev. The analysis of solutions of problems with lateral oscillatory vibrations of various beam structures under the motion of non spring point load (in Russian). Machine Dynamics Problems, 24:18-28, 1985.
  • 8. W. Szcześniak. Inercyjne obciążenia ruchome na belkach. Prace Naukowe, Politechnika Warszawska, budownictwo 112, 1990.
  • 9. S. Sadiku and H.H.E. Leipholz. On the dynamics of elastic systems with moving concentrated masses. Ing. Archiv, 57:223-242, 1987.
  • 10. E.C. Ting, J. Genin, and J.H. Ginsberg. A general algorithm for moving mass problems. J. Sound Vib., 33(l):49-58, 1974.
  • 11. B. Dyniewicz and C.I. Bajer. Paradox of the particle's trajectory moving on a string. Arch. Appl. Mech., 2008. in print.
  • 12. B. Dyniewicz and C.I. Bajer. Discontinuous trajectory of the mass particle moving on a string or a beam. Machine Dyn. Probl., 31(3), 2007.
  • 13. F.V. Filho. Finite element analysis of structures under moving loads. The Shock and Vibration Digest, 10(8):27-35, 1978.
  • 14. J.R. Rieker, Y.-H. Lin, and M.W. Trethewey. Discretization considerations in moving load finite element beam models. Finite Elements in Analysis and Design, 21:129-144, 1996.
  • 15. C.I. Bajer and B. Dyniewicz. Space-time approach to numerical analysis of a string with a moving mass. Int. J. Numer. Meth. Engng., 2008. in print.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-01e9f0f4-3779-4694-99c2-cfbcc8e64935
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.