Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 32, No. 2 | art. no. e150604
Tytuł artykułu

Laboratory investigations of sub-meter resolution telescope with segmented aperture dedicated to CubeSat platform

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In current CubeSat observation satellites, the main design constraint is the available space. Standards dictating the unit dimensions of the payload severely restrict the maximum aperture and focal length of the optical instrument. In this paper, the authors present the results of work to produce a novel DeploScope optical system for a CubeSat-type observation satellite with a segmented aperture of the primary mirror deployed in space. The telescope is designed for Earth observation and is expected to find its application in the military, precision agriculture or environmental disaster prevention. The work includes a detailed analysis of the segment aperture effect on image repeatability for different numbers of main mirror segments. Based on it, the optimal configuration of the optical model of the telescope with an aperture of 188.5 mm and a focal length of 1100 mm was selected. Based on this analysis, a so-called laboratory version of the telescope was built, providing the possibility of free correction of each segment of the primary mirror while maintaining a solid stable base for other components of the module. Imaging tests were carried out on the laboratory version of the instrument and the system was optimized for a version suitable for implementation in the payload structure of the microsatellite.
Słowa kluczowe
Wydawca

Rocznik
Strony
art. no. e150604
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
  • Department of Microsystems, Faculty of Electronics, Photonics and Microsystems, Wrocław University of Science and Technology, ul. Janiszewskiego 11/17, 50-372 Wrocław, Poland, pawel.knapkiewicz@pwr.edu.pl
  • Department of Microsystems, Faculty of Electronics, Photonics and Microsystems, Wrocław University of Science and Technology, ul. Janiszewskiego 11/17, 50-372 Wrocław, Poland
  • Satrev S. A., ul. Stablowicka 147, 54-066 Wrocław, Poland
  • Satrev S. A., ul. Stablowicka 147, 54-066 Wrocław, Poland
  • Satrev S. A., ul. Stablowicka 147, 54-066 Wrocław, Poland
  • Faculty of Mechanical Engineering, Wrocław University of Science and Technology, ul. Łukasiewicza 5, 50-371 Wrocław, Poland
  • Faculty of Mechanical Engineering, Wrocław University of Science and Technology, ul. Łukasiewicza 5, 50-371 Wrocław, Poland
Bibliografia
  • [1] Lallo, M. D. Experience with the Hubble Space Telescope: 20 years of an archetype. Proc. SPIE 51, 011011 (2012). https://doi.org/10.1117/1.OE.51.1.011011.
  • [2] Watson, J. J. Correcting surface figure error in imaging satellites using a deformable mirror. (Naval Postgraduate School, Monterey CA, 2013). http://hdl.handle.net/10945/39033.
  • [3] Allen, M. R., Kim, J. J. & Agraval, B. M. Correction of an active space telescope mirror using a deformable mirror in a woofer-tweeter configuration. Proc. SPIE 2, 029001 (2016). https://doi.org/10.1117/1.JATIS.2.2.029001.
  • [4] Greenhouse, M. A. The JWST science instrument payload: mission context and status. Proc. SPIE 9143, 914307 (2014). https://doi.org/10.1117/12.2054777.
  • [5] Sabelhaus, P. A. & Decker, J. E. An overview of the James Webb Space Telescope (JWST) project. Proc. SPIE 5487, Optical, Infrared, and Millimeter Space Telescopes (2004). https://doi.org/10.1117/12.549895.
  • [6] Clampin, M. Status of the James Webb Space Telescope observatory. Proc. SPIE 8442, Optical, Infrared, and Millimeter Wave (2012). https://doi.org/10.1117/12.926429.
  • [7] Reynolds, P., Atkinson, Ch. & Gliman, L. Design and Development of The Primary and Secondary Mirror Deployment Systems for The Cryogenic JWST. in 37th Aerospace Mechanisms Symposium 29-44 (Mechanisms Education Association, 2004). https://esmats.eu/amspapers/pastpapers/pdfs/2004/reynolds.pdf.
  • [8] Scott, A. D. et al. Wavefront sensing and controls for the James Webb Space Telescope. Proc. SPIE 8442, 84422H (2012). https://doi.org/10.1117/12.925015.
  • [9] Canas, L. et al. Active optics in deployable systems for future earth observation and science missions. Proc. SPIE 11852, 118522H (2021). https://doi.org/10.1117/12.2599380
  • [10] Hylan, J. E. et al. The large UV/optical/infrared surveyor (LUVOIR): decadal mission concept study update. in IEEE Aerospace Conference (2019) 1-15 (IEEE, 2019). https://doi.org/10.1109/AERO.2019.8741781.
  • [11] Gooding, D. et al. A novel deployable telescope to facilitate a low-cost < 1m GSD video rapid-revisit small satellite constellation. Proc. SPIE 11180, 1118009 (2019). https://doi.org/10.1117/12.2535928.
  • [12] Agasid, E., Ennico-Smith, K. & Rademacher, A. Collapsible Space Telescope (CST) for Nanosatellite Imaging and Observation. in 27th Annual AIAA/USU Small Satellites Conference 1-5 (USU, 2013). https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=2927&context=smallsat.
  • [13] Aglietti, G. S., Honeth, M., Gensemer, S. & Diegel, O. Deployable Optics for CubeSats. in 34th Annual AIAA/USU Small Satellites Conference 1-7 (USU, 2020). https://digitalcommons.usu.edu/smallsat/2020/all2020/135/.
  • [14] Dolkens, D. A deployable telescope for sub-meter resolutions from microsatellite platforms. (Delft University, 2015). http://resolver. tudelft.nl/uuid:8f73b31c-4306-4b44-9937-3b4d23a4a53f.
  • [15] Dolkens, D. & Kuiper, J. M. A deployable telescope for sub-meter resolutions from microsatellite platforms. Proc. SPIE 10563, 105633G (2017). https://doi.org/10.1117/12.2304245.
  • [16] Schwartz, N. et al. Laboratory Demonstration of An Active Optics System for High-Resolution Deployable CubeSat. in 4S Symposium, Conference Proc. 1-15 (ESA, 2018). https://doi.org/10.48550/arxiv.1809.09097.
  • [17] Champagne, J., Hansen, S. M., Newswander, T. T. & Crowther, B. G. CubeSat Image Resolution Capabilities with Deployable Optics and Current Imaging Technology. in 28th Annual AIAA/USU Small Satellites Conference 1-9 (2014). https://digitalcommons.usu.edu/cgi/viewcontent.cgi?referer=&httpsredir=1&article=3059&context=smallsat.
  • [18] Sierra-Roig, C., Focardi, M., Da Deppo, V., Morgante, G. & Colomé-Ferrer, J. The telescope metrology Control Unit (TCU) on-board the ARIEL space mission. Measurement 122, 443-452 (2018). https://doi.org/10.1016/j.measurement.2017.12.044.
  • [19] Li, L., Zhou, M., Zhu, Y., Dai, Y. & Liang, X. Satellite microvibration measurement based on distributed compressed sensing. Measurement 203, 112031 (2022). https://doi.org/10.1016/j.measurement.2022.112031.
  • [20] Costes, C. E., Cassar, G. & Escarrat, L. Optical design of a compact telescope for the next generation Earth observation system. Proc. SPIE 10564, 1056416 (2012). https://doi.org/10.1117/12.2309055.
  • [21] Gross. H., Blechinger, F. & Achtner. B. Telescopes. in Handbook of Optical Systems: Vol. 4: Survey of Optical Instruments (eds. Gross, H., Blechinger, F. & Achtner, B.) ch. 43 (2008). https://doi.org/10.1002/9783527699247.ch8.
  • [22] Metwally, M., Eltohamy, F. & Bazan, T. M. Design of very high-resolution satellite telescope part III: telescope size reduction. IEEE Trans. Aerosp. Electron. Syst. 57, 4044-4050 (2021). https://doi.org/10.1109/TAES.2021.3088424.
  • [23] Žurauskas, M. et al. IsoSense: frequency enhanced sensorless adaptive optics through structured illumination. Optica 6, 370-379 (2019). https://doi.org/10.1364/OPTICA.6.000370.
  • [24] Vissiere, A. et al. Resolution evaluation of 6-degree-of-freedom precision positioning systems: Definitions and apparatus. Measurement 152, 107375 (2020). https://doi.org/10.1016/j.measurement.2019.107375.
  • [25] Valmorbida, A., Mazzucato, M. & Pertile, M. Calibration procedures of a vision-based system for relative motion estimation between satellites flying in proximity. Measurement 151, 107161 (2020). https://doi.org/10.1016/j.measurement.2019.10716 1.
Uwagi
1. The work has been developed and financed under the Project entitled: “Development of a revolutionary Earth imaging service using the satellite REC constellation”, under Measure 1.1.1 of the Intelligent Development Operational Program 2014–2020. Project co-financed by the European Regional Development Fund, agreement number: POIR.01.01.01-00-0824 / 19-00.
2. Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-01d1f86e-89a6-48d0-b8c8-9d87dce2e719
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.