Warianty tytułu
Image reconstruction in electrical capacitance tomography
Języki publikacji
Abstrakty
W rozprawie zaprezentowano technikę obrazowania metodą elektrycznej tomografii pojemnościowej. Opisano podstawy fizyczne, wybrane metody rozwiązywania problemu prostego i algorytmy rekonstrukcji obrazów oraz konstrukcję aparatury pomiarowej. Omówiono metody wyznaczania rozkładu pola elektrycznego i macierzy wrażliwości w kontekście modelowania tomograficznych sond pojemnościowych. Numeryczne algorytmy wyznaczania rozkładu potencjału, optymalizowane przez autora pod względem czasu obliczeń, mają duże znaczenie w nieliniowej, trójwymiarowej rekonstrukcji obrazów. Zaprezentowano występujące w tomografii elektrycznej nieliniowe zagadnienie odwrotne wiąz metodami regularyzacji problemu źle uwarunkowanego i technikami doboru parametru regularyzacji. Opisano algebraiczne, liniowe i nieliniowe metody rekonstrukcji obrazów, a w szczególności zaproponowane przez autora algorytmy przedziałami liniowe. W rozprawie przedstawiono, opracowane iv ramach p tac badawczych, oprogramowanie do numerycznego modelowania i rekonstrukcji obrazów w elektrycznej tomografii pojemnościowej. Opisano konstrukcję pojemnościowych sond tomograficznych oraz metody pomiaru bardzo małych pojemności. Zaprezentowano opracowany w ramach prac doświadczalnych tomograf pojemnościowy. Rozprawa jest podsumowaniem badań prowadzonych przez autora w dziedzinie tomografu elektrycznej.
This dissertation presents an imaging technique by means of electrical capacitance tomography. The physical basis, selected methods of forward problem solution and image reconstruction algorithms, as well the design of the measurement system were described. The methods of electric field distribution and sensitivity matrix calculation were discussed m the context of the design of capacitance tomographic sensors. Numerical algorithms for potential distribution computation, optimized by die author regarding calculation speed, are of great importance in nonlinear three-dimensional image reconstruction. Nonlinear inverse problems occurring in electrical tomography together with the regularization methods for ill-conditioned problems and selection techniques of a regularization parameter were presented. Algebraic linear and nonlinear image reconstruction methods, particularly range linear algorithms proposed by the author, were described. The dissertation also presents software for numerical modelling and image reconstruction in electrical capacitance tomography elaborated within the framework of the author's research and describes the design of tomographic capacitance sensor and the methods for very small capacitance measurement. The capacitance tomography scanner elaborated within the framework of experimental work was presented. This dissertation is a summary of the research carried out by the author in the field of electrical tomography.
Słowa kluczowe
tomografia komputerowa
elektryczna tomografia pojemnościowa
ECT
problem prosty
metoda elementów skończonych
metoda różnic skończonych
rozkład pola elektrycznego
równanie Poissona
zasada wzajemności
macierz wrażliwości
problem odwrotny
problem źle postawiony
regularyzacja
problem liniowy
problem nieliniowy
algorytmy optymalizacji nieliniowej
metody pomiaru małych pojemności
modelowanie w tomografii elektrycznej
computed tomography
electrical capacitance tomography
ECT
forward problem
finite element method
finite difference method
electric field distribution
Poisson equation
reciprocity principle
sensitivity matrix
inverse problem
ill-posed problem
regularization
linear problem
nonlinear problem
nonlinear optimization algorithms
low value capacitance measurement methods
modelling in electrical tomography
Rocznik
Tom
Strony
3--226
Opis fizyczny
Bibliogr. 230 poz., rys., tab., wykr.
Twórcy
autor
- Instytut Radioelektroniki Politechniki Warszawskiej
Bibliografia
- [1] ABRAMOWICZÓWNA, Z. 1958. Słownik grecko-polski, PWN.
- [2] ADLER, A., GABBURO, R. & LIONHEART, W. 2011. Electrical Impedance Tomography. IN: SCHERZER (ed.) Handbook of Mathematical Methods in Imaging. New York: Springer Science+Business Media.
- [3] ADLER, A. & LIONHEART, W R, B. 2006. Uses and abuses of EIDORS: An extensible software base for EIT. Physiological Measurement, 27, 25-42.
- [4] BADEA, C. & GORDON, R. 2004. Experiments with the nonlinear and chaotic behavior of the multiplicative algebraic reconstruction technique (MART) algorithm for computed tomography. Phys. Med. Biol, 49, 1455-1474.
- [5] BAGSHAW, A. P., LISTON, A. D., BAYFORD, R. H., TIZZARD, A., GIBSON, A. P., TIDSWELL, A. T., SPARKES, M. K., DEHGHANI, H., BINNIE, C. D. & HOLDER, D. S. 2001. Electrical impedance tomography of human brain function using reconstruction algorithms based on the finite element method. NeuroImage, 20, 752-764.
- [6] BAILEY, D. L., TOWNSEND, D. W., VALK, P. E. & MAISEY, M. N. 2005. Positron, Emission Tomography: Basic Sciences, Springer-Verlag.
- [7] BANASIAK, R., WAJMAN, R., BETIUK, J. & SOLEIMANI, M. 2009a. Feasibility study of dielectric permittivity inspection using a 3D capacitance CT method. NDT & E International, 42, 316-322.
- [8] BANASIAK, R., WAJMAN, R., SANKOWSKI, D. & SOLEIMANI, M. 2010. Three-dimensional nonlinear inversion of electrical capacitance tomography data using a complete sensor model. Progress In Electromagnetics Research PIER, 100, 219-234.
- [9] BANASIAK, R., WAJMAN, R. & SOLEIMANI, M. 2009b. An efficient nodal Jacobian method for 3D electrical capacitance tomography image reconstruction. Insight - Non-Destructive Testing and Condition Monitoring, 51, 36-38.
- [10] BANGLIANG, S., YIHENG, Z., PENG, D. & YAO, B. 2000. The use of simultaneous iterative reconstruction technique for electrical capacitance tomography. Chem. Eng. J., 37-41.
- [11] BARBER, D. C. 1989. A review of image reconstruction techniques for electrical impedance tomography. Med Phys., 16, 162-9.
- [12] BARBER, D. C., BROWN, B. H. & FREESTON, I. L. 1983. Imaging spatial distributions of resitivity using applied potential tomography. Electron. Lett., 19, 933-935.
- [13] BAXTER, L. K. 1996. Capacitive Sensors: Desing and Applications, IEEE Press Series on Electronics Technology.
- [14] BECK, M. S., BYARS, M., DYAKOWSKI, T., WATERFALL, R., HE, R., WANG, S. J. & YANG, W. Q. 1997. Principles And Industrial Applications Of Electrical Capacitance Tomography. Measurement + Control, 30, 197-200.
- [15] BIELECKI, K. & SMOLIK, W. Pakiet ectsim do modelowania w elektrycznej tomografii pojemnościowej. VI Sympozjum Naukowe Techniki Przetwarzania Obrazu - TPO’2010, 2010 Serock, 106-114.
- [16] BIELECKI, K, SMOLIK, W. & SZABATIN, R. 2010. Oprogramowanie ECTsim do modelowania w elektrycznej tomografii pojemnościowej. Przegląd Telekomunikacyjny, Wiadomości Telekomunikacyjne, Wydawnictwo Czasopism i Książek Technicznych SIGMA NOT, 177 5-8.
- [17] BJORCK.A. 1996. Numerical methods for least squares problems, Amsterdam, SIAM.
- [18] BOBROWSKI, C. 1995. Fizyka - Krótki kurs, Wydawnictawa Naukowo-Techniczne.
- [19] BOVERMAN, G., KAO, T.-J., ISAACSON, D. & SAULNIER, G. J. 2009. An Implementation of Calderón's Method for 3-D Limited-View EIT. IEEE TRANSACTIONS ON MEDICAL IMAGING, 28, 1073-1082.
- [20] BRACEWELL, R. N. & PRESTON, G. W. 1956. Radio Reflection and Refraction Phenomena in the High Solar Corona. Astrophysical Journal, 123, 14.
- [21] BRACEWELL, R. N. & RIDDLE, A. C. 1967. Inversion of fan beam scans in radioastronomy. Astrophys. J., 150427-434.
- [22] BRANCIK, L. Comparative Study of Jacobian Calculation Techniques in Electrical Impedance Tomography. VI International Workshop "Computational Problems of Electrical Engineering", 2004 Zakopane, Poland. 101.
- [23] BRANDSTATTER, B., HOLLER, G. & WATZENIG, D. 2003. Reconstruction of inhomogeneities in fluids by means of capacitance tomography. COMPEL-Int. J. Comput. Math. Electr. Electron. Eng., 22, 508-19
- [24] BREBBIA, C. A., TELLES, J. C. F. & WRÓBEL, L. C. 19B4. Boundary Element Techniques, Berlin, N.Y., Springer-Verlag.
- [25] BRONSZTEJN, I. N., SIEMIENDIAJEW, K, A., MUSIOL, G. & MUHLIG, H. 2004. Nowoczesne kompendium matematyki, Warszawa, Wydawnictow Naukowe PWN.
- [26] BROUW, W. N. 1975. Aperture synthesis. Methods in Comput. Phys., B, 131-175.
- [27] BRZESKI, P., MIRKOWSKI, JĄ, OLSZEWSKI, T., PLĄSKOWSKI, A., RADOMSKI, D., SMOLIK, W. & SZABATIN, R. Wielokanałowy tomograf pojemnościowy. Mat. XIII Krajowej konferencji Naukowej Biocybernetyka i Inżynieria biomedyczna, Tom II Biopomiary, 2003a Gdańsk, Poland 763-768.
- [28] BRZESKI, P., MIRKOWSKI, J., OLSZEWSKI, T., PLĄSKOWSKI, A.. SMOLIK, W. & SZABATIN, R. Tomograf pojemnościowy do obrazowania technologicznych procesów dynamicznych. Mat. IV Sympozjum Naukowego Techniki Przetwarzania Obrazu, ISBN 83-7207-395-3, 2002 Serock, Poland. 340-351.
- [29] BRZESKI, P., MIRKOWSKI, J., OLSZEWSKI, T., PLĄSKOWSKI, A., SMOLIK, W. & SZABATIN, R. Capacitance tomograph. Proc. 72nd ICB Seminar Recent Achievements of bioimpedance research, 2003b Warsaw, Poland.
- [30] BRZESKI, P., MIRKOWSKI, J., OLSZEWSKI, T., PLĄSKOWSKI, A.. SMOLIK, W. & SZABATIN, R. Capacitance tomography for dynamic process imaging. Proc. 3rd World Congress on Industrial Process Tomography, 2003c Banff, Canada. 642-647.
- [31] BRZESKI, P., MIRKOWSKI, J., OLSZEWSKI, T.. PLĄSKOWSKI, A., SMOLIK, W. & SZABATIN, R. 2003d. Multichannel capacitance tomograph for dynamic process imaging. Opto-Electronics Review, 175-180.
- [32] BRZESKI, P., MIRKOWSKI, J., OLSZEWSKI, T., RADOMSKI, D. SMOLIK, W. & SZABATIN, R. Measurement effects in Capacitance Tomography. Proc. 3rd International Symposium on Process Tomography in Poland, 2004 Łódź, Poland. 24-26.
- [33] BRZESKI, P., MIRKOWSKI, J., OLSZEWSKI, T., SMOLIK, W & SZABATIN, R. Tomographic techniques and image processing for process tomography. Research activities. IV School of The Computer Aided Design Manufacturing and Management maintain, Symposium on Proces Tomography, 2000 Jurata.
- [34] BULLO, M., DUGHIERO, F., GUARNIERI, M. &; TITTONEL, E. 2004. Isotropic and anisotropic electrostatic field computation by means of the cell method. IEEE Trans. on Magnetics, 40.
- [35] BURCZYŃSKI, T. 1995. Metoda elementów brzegowych w mechanice, Warszawa, Wydawnictwa Naukowo-Techniczne.
- [36] BUZUG, T. M. & BORGERT, J. 2012. Magnetic Particle Imaging. A Novel SPIO Nanoparticle Imaging Technique., Berlin, Springer-Verlag.
- [37] BYARS, M. 3D ECT measurements using a modified 2D ECT system 6th International Symposium on Process Tomography, 2012 Cape Town, RSA. OR23.
- [38] CALDERON, A. P. 1980. On an inverse boundary value problem Seminar on Numerical Analysis and its Applications to Continuum Physics. Rio de Janeiro: Soc. Brasil. Mat.
- [39] CALVETTI, D., MORIGI, S., REICHEL, L. & SGALLARI, F. 2000. Tikhonov regularization and the L-curve for large discrete ill-posed problems. J. Comput. Appl. Math., 423-446.
- [40] CHANIECKI, Z., DYAKOWSKI, T., NIEDOSTATKIEWICZ, M., PLĄSKOWSKI, A., SANKOWSKI , D., SMOLIK, W. & SZABATIN, R. Electrical capacitance tomography for Studying the flow of friable materials in silos. Proc. 3rd International Symposium on Process Tomography in Poland, 2004 Łódź, Poland. 32-35.
- [41] CHEN, C. N. & HOULT, D. I. 1989. Biomedical Magnetic Resonance Technology, IOP Publishing Ltd.
- [42] CIERNIAK, R. 2005. Tomografia komputerowa. Budowa urządzeń CT. Algorytm rekonstrukcyjny, Exit
- [43] CIERNIAK, R. 2011. X-Ray Computed Tomography in Biomedical Engineering, Springer-Verlag.
- [44] CORMACK, A, M. 1963. Representation of a function by its line integrals, with some radiological applications I. J. Appl. Physic, 34, 2722-2727.
- [45] CORMACK, A. M. 1964. Representation of a function by its line integrals, with some radiological applications II. / Appl. Physic, 35, 195-207.
- [46] CROWTHER. R. A., DEROSIER, D. J. & KLUG, A. 1970. The reconstruction of a threedimensional structure from its projections and its application to electron microscopy. Proc. R. Soc. London, 319-340.
- [47] CURTIS, E. B. & MORROW, J. A. 1990. Determining the Resistors in a Network. SIAM J. Appl. Math., 50, 918-930.
- [48] CZARNECKI, P., SMOLIK, W. & SZABATIN, R. 2010. Electrical Capacitance Tomography System Architecture. Electrical capacitance Tomography, Warszawa Wydawnictwo Książkowe Instytutu Elektrotechniki.
- [49] DAILY, W., RAMIREZ, A., BINLEY, A. & LABRECQUE, D. 2005. Electrical Resistance Tomography - Theory and Practice. In: BUTLER, D. K (ed.) Near-Surface Geophysics. Society of Exploration Geophysicists.
- [50] DEMPSTER, A. P., LAIRD, N. M. & RUBIN, D. B. 1977. Maximum likelihood from incomplete data via the EM algorithm Journal of the Royal Statistical Society, 39, 1-38.
- [51] DUDEK-DYDUCH, E., WĄS, J., DUTKIEWICZ, L., GROBLER-DĘBSKA, K, & GUDOWSKI, B. 2011. Metody numeryczne. Wybrane zagadnienia, Kraków, Wydawnictwa AGH
- [52] DYAKOWSKI, T, EDWARDS, R. B., XIE, C. G. & WILLIAMS, R. A. 1997. Application of capacitance tomography to gas-solid flows. Chem. Eng. Sci., 2099-2110.
- [53] EDHOLM, P., HERMAN, G. T. & ROBERTS, D. A. 1988. Image reconstruction from linograms: Implementation and evaluation. IEEE Trans. Mid. Imag., 7, 239-246.
- [54] EPSTEIN, B. R. & FOSTER, K. R. 1983. Anisotropy in the dielectric properties of skeletal muscle. Med. Biol. Eng. Computing, 21, 51-5.
- [55] FAN, Z. & GAO, R. X. A New Sensing Method for Electrical Capacitance Tomography. Instrumentation and Measurement Technology Conference (I2MTC), 2010 Austin, TX, US. IEEE, 48-53.
- [56] FANG, W. 2006. Reconstruction of permittivity profile from boundary capacitance data Applied Mathematcs and Computation, 177, 178-188.
- [57] FELDKAMP, L. A., DAVIS, L. L & KRESS, J. W. 1984. Practical cone-beam algorithm. J. Opt. Soc. Am., 1, 612-619.
- [58] FERZIGER, J. H. & PERIC, M. 1997. Computational methods fo fluid dynamics, Berlin, New York, Springer.
- [59] FILIPOWICZ, S. & RYMARCZYK, T. 2003. Tomografia impedancyjna pomiary, konstrukcje i metody tworzenia obrazu, BEL Studio.
- [60] FILIPOWICZ, S. F. 2005. Diagostyka niejednorodnych obiektów przestrzennych metodami tomografii impedancyjnej i elektroencefalografii. Warszawa, Oficyna Wydawnicza Politechniki Warszawskiej.
- [61] FINDEISEN, W., SZYMANOWSKI.J. & WIERZBICKI, A. 1980. Teoria i metody obliczeniowe optymalizacji, Warszawa, PWN.
- [62] FLETCHER, R. 1987. Practical methods of optimization, New York, John Wiley & Sons.
- [63] FORTUNA, Z., MACUKOW, B. & WĄSOWSKI, J. 2006. Metody Numeryczne, Wydawnictwa Naukowo-Techniczne.
- [64] FREESTON, I. L. & TOZER, R. C. 1995. Impedance imaging using induced currents. Phys. Mew., 16, 257-66.
- [65] GABRIEL, C.. GABRIEL, S. &. CORTHOUT. E. 1996a. The dielectric properties of biological tissues: I. Literature survey. Physics in Medicine and Biology, 41, 2231-2249.
- [66] GABRIEL, S., LAU, R. & GABRIEL, C. 1996b. The dielectric properties of biological tissues: II. Measurements in die frequency range 10 Hz to 20GHz. Physics in Medicine and Biology, 41, 2251-2269.
- [67] GABRIEL, S., LAU, R. & GABRIEL, C. 1996c. The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Physics in Medicine and Biology, 41, 2271-2293.
- [68] GESELOWITZ, D. B. 1971. An Application of Electrocardiographic Lead Theory to Impedance Plethysmography. IEEE Trans. Biomed. Eng., 38-4.
- [69] GILBERT, P. 1972. Iterative methods for the three-dimensional reconstruction of an object from projections. J. Theor. Biol, 36, 105-17.
- [70] GILL., P. E., MURRAY, W. & WRIGHT, M. H. 1981. Practical optimization, London, Academic Press, Inc.
- [71] GOLUB, G. H. 2005. Numerical Linear Algebra, Lecture 13. Stanford: Stanford University, Department of Computer Science.
- [72] GOLUB, G. H. & MATT, U. 1997. Generalized cross-validation for large-scale problems. Computational and Graphical Stat, 6, 1-34.
- [73] GOLUB, G. H. & VAN LOAN, C. F. 1996. Matrix computations, Johns Hopkins.
- [74] GOLUB, L. & PASACHOFF. J. M. 2009. The Solar Corona, Cambridge University Press.
- [75] GOMEZ, S., ONO, M., GAMIO, C. & FRAGUELA, A. 2003. Reconstruction of capacitance tomography images of simulated two-phase flow regimes. Appl. Num. Math., 197-208.
- [76] GORDON, R., BENDER, R. & HERMAN, G. T. 1970. Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography. J. Theor. Biol., 29,471-81.
- [77] GRAY, D. C. 1963. Handbook of the American Institute of Physics, New York, McGraw-Hill Book Co.
- [78] GRIFFTTHS, D. J. 2005. Podstawy elektrodynamiki, Warszawa, Wydawnictwo Naukowe PWN.
- [79] GRIFFITHS, H. 2001. Magnetic induction tomography. Meas. Sci. Technol, 12.
- [80] GROETSCH, C. W. 1984. The Theory of Tikhonov Regularization for Fredholm Integral Equations of the First Kind, Boston, Pitman.
- [81] GUT, Z. & WOLANSKI, P. 2010. Flame Imaging Using 3D Electrical Capacitance Tomography. Combustion Science and Technology, 182, 1580-1585.
- [82] GUZIAK, T., KAMIŃSKA, A., PAŃCZYK, B. & SIKORA, J. 2002. Metody numeryczne w elektrotechnice, Lublin, Wydawnictwo Politechniki Lubelskiej.
- [83] GYIMESI, M., WANG, J. S. & OSTERGAARD, D. 2001. Hybryd P-element and Trefftz Method for Capacitance Computation. IEEE Trans. On MAG, 37, 3680-3683.
- [84] HADAMARD. J. 1915. Four Lectures on Mathematics, New York, Columbia University Press.
- [85] HAMMER, E. A. & JOHANSEN, G. A. 1997. Process Tomography In The Oil Industry-State Of The Art And Future Possibilities. Measurement + Control, 30, 212-216.
- [86] HANSEN, P. C. 1992. Analysis of discrete ill-posed problems by means of the L-curve. SIAM rev., 34, 561-580.
- [87] HANSEN, P. C. 1994. Regularization Tools A Matlab package for analysis and solution of discrete ill-posed problems. Numerical Algorithms, 6, 1-35.
- [88] HANSEN, P. C. 1998. Rank-deficient and discrete ill-posed problems: numerical aspects of linear inversion, Philadephia, SIAM.
- [89] HANSEN, P. C. 2007. Regularization Tools Version 4.0 for Matlab 7.3. Numerical Algorithms, 46, 189-194.
- [90] HANSEN, P. C. & O'LEARY, D P. 1993. The use of the L-curve in the regularization of discrete ill-posed problems. SIAM J. Sci. Comput., 14, 1487-1503.
- [91] HARTEVELD, W. K., VAN HALDEREN, P. A., MUDDE, R. F., VAN DEN BLEEK, C. M., VAN DEN AKKER, H. E. A. & SCARLETT, B. A Fast Active Differentiator Capacitance Transducer for Electrical Capacitance Tomography. 1st World Congress on Industrial Process Tomography, 1999 Buxton, Greater Manchester.
- [92] HENDERSON, R. P. & WEBSTER, J. G. 1978. An impedance camera for spatially specific measurements of the thorax IEEE Trans. Biomed. Eng., 25, 250-4.
- [93] HENNEL, J. W. 1999. Podstawy teoretyczne tomografii magnetyczno-rezonansowej, Toruń, Wyd. Uniwersytetu Mikołaja Kopernika.
- [94] HERMAN, G. T. 1979. Image reconstruction from projections, implementation and applications, Springer-Verlag.
- [95] HERMAN, G. T. 1980. Image reconstruction from projection: The fundamentals of computerized tomography, New York,, Academic Press.
- [96] HERMAN, G. T. & LENT, A. 1976. Iterative reconstruction algorithms. Computers in Biology and Medicine, 6, 273-294.
- [97] HINZ, J., GEHOFF, A., MOERER, O., FRERICHS, I., HAHN, G., HELLIGE, G. & QUINTEL, M. 2007. Regional filling characteristics of the lungs in mechanically ventilated patients with acute lung injury. Eur. J. Anaesthesiol., 24, 414-424.
- [98] HINZ, J., HAHN, G. & QUINTEL, M. 2008. Elektrische Impedanztomographie - Reif fur die klinische Routine bei beatmeten Patienten? Anaesthesiol, 57, 61-69.
- [99] HOLDER, D. S. 1993. Clinical and Physiological Applications of Electrical Impedance Tomography, London, UCL Press.
- [100] HOLDER, D. S. 2004. Electrical Impedance Tomography: Methods, History and Applications, Insbtute of Physics.
- [101] HOLLER. G., WATZENIG, D. & BRANDSTATTER, B. A fast Gauss-Newton based ECT algorithm with automatic adjustment of the regularization parameter. Proc. 3rd World Congress on Industrial Process Tomography, 2003 Banff, Alberta, Canada. 415-420.
- [102] HOUNSFIELD, G. N. 1968-1972. A method of and apparatus for examination of a body by radiation such as X or gamma radiation. U.K. patent application.
- [103] HOUNSFIHLD, G. N. 1975. Computerized transverse axial scanning tomography: Part I: Description of the system. Br. J. Radiol, 1016-1022.
- [104] HU, H., KATSOUROS, M., YANG, W. Q. & HUANG, S. M. 2007. Further analysis of charge/discharge capacitance measurement circuit used with tomography sensors. Sensors & Transducers Journal, 80.
- [105] HUANG, PLASKOWSKI, XIE & BECK 1988a. Capacitance-based tomographic flow imaging system. Electron. Lett., 24.
- [106] HUANG, M., STOTT, A. L., GREEN, R G. & BECK, M. S. 1988b. Electronic transducers for industrial measurement of low value capacitances. J. Phys. E: Sci. lustrum., 21 242-250.
- [107] HUANG, S. M., GREEN, R. G., PLASKOWSKI, A. & BECK, M. S. 1998. A high frequency stray-immune capacitance transducer based on the charge transfer principle. IEEE Tran. Instrum. Meas., 37, 368-373.
- [108] HUANG, S. M., PLASKOWSKI, A., XIE, C. G. & BECK, M. S. 1988c. Capacitance-based tomographic flow imaging system. Electron. Lett., 24.
- [109] HUANG, S. M., PLASKOWSKI, A., XIE, C. G. & BECK, M. S. 1989. Tomographic imaging of two-component flow using capacitance sensors. J. Phys. E: Sci. Instrum., 22, 173-177.
- [110] HUANG, S. M., XIE, C. G., THORN, R., SNOWDEN, D. & BECK, M. S. 1992. Design of sensor electronics for electrical capacitance tomography. IEE Proceedings-G, 139.
- [111] HUDSON, H. M. & LARK1N, R. S. 1994. Accelerated Image Reconstruction using Ordered Subsets of Projection Data. IEEE Trans. Med. Imag., 13, 601-609.
- [112] HURT, W. D. 1985. Multiterm Debye dispersion relations for permittivity of muscle. IEEE Trans. Biomed. Eng, 32, 60-4.
- [113] ISAKSEN, O. 1996. A review of reconstruction techniques for capacitance tomography. Meas. Sci. Technol, 325-337.
- [114] JAWORSKI, A. J. & BOLTON, G. T. 2000. The design of an electrical capacitance tomography sensor for use with media of high dielectric permittivity. Meas. Sci. Technol., 11, 743-757.
- [115] JAWORSKI, A. J. & DYAKOWSKI, T. 2001, Application of electrical capacitance tomography for measurement of gas-solid flow characteristics in a pneumatic conveying system. Meas. Sci. Technol., 12, 1109-1119.
- [116] JAWORSKI, A. J. &L DYAKOWSKI, T. 2005. Measurements of oil-water separation dynamics in the primary separation systems. Flow Measurement and Instrumentation, 16, 113-127.
- [117] JIN J. 1993. The Finite Element Method in Electromagnetics, New York, John Wiley &Sons.
- [118] JOHNSTON, P. R. & GULRAJANI, R. M. 2000. Selecting the corner in the L-curve approach to Tikhonov regularization. IEEE Trans. Biomed. Eng. 47, 1293 - 1296.
- [119] JORGENSEN, S. M., WHITLOCK, S. V., THOMAS, P. J., ROESSLER. R. W. & RTTMAN, E. L. The dynamic spatial reconstructor: A high speed, stop action, 3-D, digital radiographic imager of moving internal organs and blood. Proc SPIE, Ultrahigh- and High-Speed Photography, Videography, Photonics, and Velocimetry, 1990. 180-191.
- [120] KACZMARZ, S. 1937. Angenaherte Auflosung von Systemen linearer Gleichungen. Bullutin die l'Academie Polonaise des Sciences et des Lettres, A35, 355-357.
- [121] KAIPIO, J. & SOMERSALO, E. 2005. Statistical and Computational Inverse Problem, New York, Springer Verlag.
- [122] KAK, A. C. & SLANEY, M. 1988. Principles of Computerized Tomographic Imaging. IEEE Press, IEEE Inc.
- [123] KALENDER, A., KLOTZ, W. & YOCK. E. 1990. Spiral volumetric CT with single breath-hold technique, continuous transport, and continuous scanner rotation. Radiology, 176, 181-183.
- [124] KALENDER, W. A. 2011, Computed Tomography. Fundamentals, System Technology, Image Quality, Applications Erlangen, Publicis Publishing.
- [125] KIEŁBASIŃSKI, A. & SCHWETLICK, H. 1992. Numeryczna algebra liniowa. Warszawa, WNT.
- [126] KŁOS, M. & SMOLIK, W. T. Single Channel Electrical Capacitance Tomograph for Dynamic Process Visualization. IEEE International Conference on Imaging Systems and Techniques (IST 2011) Proceedings, May 17-18, 2011 Batu Feringhi, Penang, Malaysia. 133-136.
- [127] KOLEHMAINEN, V. 2001. Novel approaches in image reconstruction in diffusion tomography. Kuopio University.
- [128] KOTRE, C. J. 1989. A sensitivity coefficient method for me reconstruction of electrical impedance tomography. Clin. Phys. Physiol. Meas., 10, 275-281.
- [129] KOTRE, C. J. 1994. EIT image reconstruction using sensitivity weighted filtered backprojection. Physiol. Meas., 15, 125-36.
- [130] KOWALCZYK, A. & WOJTKOWSKI, M. Tomografia optyczna. Materiały XXXVI Zjazdu Fizyków Polskich, 2002 2001 Toruń. Postępy Fizyki 172-175.
- [131] KUHN, F. T. & VAN HALDEREN, P. A. 1997. Design of an active-differentiator–based capacitance transducer for electrical capacitance tomography. Meas. Sci. Technol., 947-950.
- [132] LANDWEBER, L. 1951. An Iterative Formula for Fredholm Integral Equations of the First Kind. Amer. J. Math., 73, 615-624.
- [133] LAX, P. D. 2007. Linear Algebra and Its Applications, John Wiley & Sons.
- [134] LENT, A. A convergent algorithm for maximum entropy image restoration, with a medical x-ray application. In: SHAW, R., ed. Image Analysis and Evaluation, 1977 Washington, DC. Society of Photographic Scientists and Engineers, 249-57.
- [135] LEWITT, R. M. 1992. Alternatives to voxels for image representations in iterative reconstruction algorithms. Phys. Med. Biol., 37, 705-716
- [136] LI, Y. & YANG, W. Q. 2008. Image reconstruction by nonlinear Landweber iteration for complicated distributions. Meas. Sci. Technol. 19, 1-8.
- [137] LIONHEART, W., POLYDORDES, N. & BORSIC, A. 2004 The reconstruction problem. In: HOLDER, D. S. (ed.) Electrical Impedance Tomography: Methods, History and Applications. Institute of Physics.
- [138] LIONHEART, W. R. 2004. EIT reconstruction algorithms: pitfalls, challenges and recent developments. Physiol. Meas., 25, 125-142.
- [139] LIU, Z., BABOUT, L., BANASIAK, R. & SANKOWSKI, R. 2010. Effectiveness of Rotatable Sensor to Improve Image Accuracy of ECT System. Flaw Measurement and Instrumentation, 21, 219-227.
- [140] LU, D., SHAO, F. & GUO, Z. 2009. A high voltage method for measuring low capacitance rot tomography. Review of Scientific Instruments, 80.
- [141] MAJCHRZAK, E. & MOCHNACKI, B. 2004. Metody numeryczne. Podstawy teoretyczne, aspekty praktyczne i algorytmy, Gliwice, Wydawnictwo Politechniki Śląskiej.
- [142] MANN, R. & WANG, M. 1997. Electrical Process Tomography: Simple And Inexpensive Techniques For Process Imaging. Measurement + Control 30, 206-211.
- [143] MARTINSEN, O. G., GRIMNES, S. & SCHWAN, H. P. 2002. Interface phenomena and dielectric properties of biological tissue. In: SOMASUNDARAN, P. (ed.) Encyclopedia of Surface and Colloid Science. New York, USA CRC Press.
- [144] MCLACHLAN, G. J. & KRISHNAN, T. 1997. The EM Algorithm and Extensions, New York, John Wiley & Sons, Inc.
- [145] METHERALL, P., BARBER, D. C., SMALLWOOD, R. H. & BROWN, B. H. 1996. Three-dimensional electrical impedance tomography. Nature, 11, 509-12.
- [146] MIRKOWSKI, J., SMOLIK, W., BRZESKI, P., OLSZEWSKI, T., RADOMSKI, D. & SZABATTN, R. Software for sensor modelling in electrical capacitance tomography. Proc. 3rd International Symposium on Process Tomography in Poland, 2004 Łódź, Poland. 118-123.
- [147] MIRKOWSKI. J., SMOLIK, W., OLSZEWSKI, T., RADOMSKI, D., SZABATIN, R. & BRZESKI, P. Parameters Optimization For Model Based Image Reconstruction In Electrical Capacitance Tomography. Proc. 4th World Congress on Industrial Process Tomography, 2005 Aizu, Japan. 703-707.
- [148] MIRKOWSKI, J., SMOLIK, W. T. YANG, M., OLSZEWSKI, T., SZABATIN, R., RADOMSKI, D. & YANG. W. Q. 2008. A New Forward-Problem Solver Based on a Capacitor-Mesh Model for Electrical Capacitance Tomography. IEEE Trans. Instrumentation and Measurement, 57.
- [149] MORUCCI, J. P. & MARSILI, P. M. 1994. A direct sensitivity matrix approach for fast reconstruction in electrical impedance tomography. Physiol. Meas., 15, 107-U4.
- [150] MUELLER, J. L. & SILTANEN, S. 2012. Linear and Nonlinear Inverse Problems with Practical Applications, Philadelphia, SIAM.
- [151] NATTERER, F. & RTTMAN, E. L. 2002. Past and Future Directions in X-Ray Computed Tomography (CT). International Journal of Imaging Systems and Technology, 12, 175-187.
- [152] NATTERRER, F. 1986. The mathematics of computerized tomography, John Wiley & Sons Lid.
- [153] NIEDOSTATKIEWICZ, M., TEJCHMAN, J., CHANIECKI, Z. & GRUDZIEŃ, K. 2009. Determination of bulk solid concentration changes during granular flow in a model silo with ECT sensors. Chem. Eng. Sci., 64, 20-30.
- [154] NOCEDAL, J. & WRIGHT, S. J. 2006. Numerical Optimization, Springer Science.
- [155] OLDENDORF, W. H. 1963. Radiant energy apparatus for investigating selected areas of objects obsured by dense material. U.S. patent application 3106640.
- [156] OLSZEWSKI, T., BRZESKI, P., MIRKOWSKI, J., PLĄSKOWSKI, A., SMOLIK, W. & SZABATIN, R. Capacitance tomograph - Design and preliminary results. Proc. 2rd International Symposium on Process Tomography in Poland, Oficyna Wydawnicza Politechniki Wrocławskiej, 2002, Wrocław, Poland. 159-168.
- [157] OLSZEWSKI T., BRZESKI, P., MIRKOWSKI, J., PLĄSKOWSKI, A., SMOLIK, W. &. SZABATIN, R. Modular capacitance tomograph. Proc. 4th International Symposium on Process Tomography in Poland, 2006 Warsaw, Poland. 151-156.
- [158] OLSZEWSKI, T., KLECZYŃSKI, P., BRZESKI, P., MIRKOWSKI, J., SMOLIK, W. & SZABATIN, R. Electrical capacitance tomograph designs. Proc. 3rd International Symposium on Process Tomography in Poland, 2004 Łódź, Poland. 106-110.
- [159] OLSZEWSKI, T., SMOLIK, W., MIRKOWSKI, J., SZABATIN, R., BRZESKI, P. & RADOMSKI, D. 2008. Electrical Capacitance Tomograph ET3. Elektronika, 4, 151-157.
- [160] OSTROWSKI, K. L., LUKE, S. P. & WILLIAMS, R. A. 1997. Simulation of the Performance of Electrical Capacitance Tomography for Measurement of Dense Phase Pneumatic Conveying. Chan. Eng. J., 68, 197-205.
- [161] PETHIG, R. 1984. Dielectric properties of biological materials: Biophysical and medical applications. JEEE Trans. Elec. Insul, 19, 453-74.
- [162] PETHIG, R. 1987. Dielectric properties of body tissues. Clin. Phys. Physiol. Meas., 8, 5 -12.
- [163] PLASKOWSKI, A., BECK, M., THORN, R. & DYAKOWSKI, T. 1995. Imaging industrial flows. Applications of electrical process tomography, IOP Publishing Ltd.
- [164] POLYDORIDES, N. & LIONHEART, W. R. B. 2002. A Matlab toolkit for three-dimensional electrical impedance tomography: a contribution to the Electrical Impedance and Diffuse Optical Reconstruction Software project. Meas. Sci. Technol, 13, 1871-1883.
- [165] RADON, J. 1917. Uber die Bestimmung von Funktionen durch ihre Integralwerte langs gewisser Mannigfaltigkeiten. Ber. Verh. Sache. Akad. Wiss. Leipzig, 69, 262-277.
- [166] RADZIK, B., SZABATIN, R., MIRKOWSKI, J., SMOLIK, W. & OLSZEWSKI, T. 2009. Elektryczny tomograf pojemnościowy IREna. Elektronika, Wydawnictwo SIGMA NOT, 126-129.
- [167] RAMACHANDRAN, G. N. & LAKSHMNARAYANAN, A. V. 1971. Three-dimensional reconstruction from radiographs and electron micrographs: Application of convolutions instead of Fourier transforms. Proc. Nat. Acad. Sci. USA, 68, 2236-2240.
- [168] RAO, S. S. 2011. The finite element method in engineering, Oxford, Elsevier.
- [169] REINECKE, N. & MEWES, D. 1996. Recent developments and industrial research applications of capacitance tomography. Meas. Sci. Technol., 7, 325-337.
- [170] ROSŁONIEC, S. 2008. Wybrane metody numeryczne z przykładami zastosowań w zadaniach inżynierskich, Warszawa, Oficyna Wydawnicza Politechniki Warszawskiej.
- [171] SADECKA, L. 2010. Metoda różnic skończonych i metoda elementów skończonych w zagadnieniach mechaniki konstrukcji i podłoża. Oficyna Wydawnicza. Politechnika Opolska.
- [172] SADIKU, M. N. O. 2009. Numerical Techniques in Electromagnetics with MATLAB, Third Edition, CRC Press.
- [173] SANKOWSKI, D. & SIKORA, J. 2010. Electrical capacitance tomography: Theoretical basis and applications. Warszawa, Wydawnictwo Książkowe Instytutu Elektrotechniki.
- [174] SHAO, F. & MONG, Q. 1999. A method for measuring low capacitance for tomography. Rev. Sci. Instrum., 70, 3177-3179.
- [175] SHEPP, L. A. & LOGAN, B. F. 1974. The fourier reconstruction of a head section. IEEE Trans. Nucl Sci., 21-43.
- [176] SHEPP, L, A. & VARDI, Y. 1982. Maximum likelihood for emission tomography. IEEE Trans. Med. Imag, 113-122.
- [177] SIKORA, J. 1998. Algorytmy numeryczne w tomografii impedancyjnej, Warszawa, Oficyna Wydawnicza Politechniki Warszawskiej.
- [178] SIKORA, J. 2000. Algorytmy numeryczne w tomografii impedancyjnej i wiroprądowej. Warszawa, Oficyna Wydawnicza Politechniki Warszawskiej.
- [179] SIKORA, J. 2007. Boundary Element Method for Inpedance and Optical Tomography, Oficyna Wydawnicza Politechniki Warszawskiej.
- [180] SMOLIK, W. Szybka metoda wyznaczania potencjału w iteracyjnym algorytmie rekonstrukcji obrazów z modyfikacją macierzy czułości w elektrycznej tomografii pojemnościowej. V Sympozjum Naukowe Techniki Przetwarzania Obrazu, Oficyna Wydawnicza Politechniki Warszawskiej, ISBN 82-7207-664-2, 2006 Serock 218-232.
- [181] SMOLIK, W. Reconstruction of complex objects in electrical capacitance tomography. IEEE International Workshop on Imaging Systems and Techniques (IST 2009), 2009 Shenzhen, China. 432-437.
- [182] SMOLIK, W. 2010a. Forward Problem Solver for Image Reconstruction by Nonlinear Optimization in Electrical Capacitance Tomography. Flow Measurement and Instrumentation, 21, 70-77.
- [183] SMOLIK, W., MIRKOWSKI, J., OLSZEWSKI, T., RADOMSKI, D., BRZESKI, P. & SZABATIN, R. 2005a. Measurement circuit based on programmable integrators and amplifiers for electrical capacitance tomography. Kwartalnik Elektroniki i Telekomunikacji, 51, 127-137.
- [184] SMOLIK, W., MIRKOWSKI, J., OLSZEWSKI, T. & SZABATIN, R. Verification of image reconstruction algorithm with sensitivity matrix updating for real data in electrical capacitance tomography. Proc. 4th International Symposium on Process Tomography in Poland, 2006 Warsaw, Poland.
- [185] SMOLIK, W. & RADOMSKI, D. The Maltlab's Toolbox for Iterative Image Reconstruction in Electrical Capacitance Tomography. 5th International Symposium on Process Tomography, 2008a Zakopane, Poland. 98-103.
- [186] SMOLIK, W. & RADOMSKI, D. The Method of Calculation of Potential Distribution for Image Reconstruction Iterative Algorithm in Electrical Capacitance Tomography. 5th International Symposium on Process Tomography, 2008b Zakopane, Poland. 104-110.
- [187] SMOLIK, W. & RADOMSKI, D. Ocena wpływu dyskretyzacji modelu na jakość rekonstrukcji obrazów w tomografii pojemnościowej. VI Sympozjum Naukowe Techniki Przetwarzania Obrazu -TPO'2010 ISBN 978-83-7207-919-0, 2010 Serock. 22-28.
- [188] SMOLIK, W., RADOMSKI, D., MIRKOWSKI, J, OLSZEWSKI, T., SZABATIN, R. & BRZESKI, P. Nonlinear image reconstruction with EM algorithm in electrical capacitance tomography. Proc. 4th World Congress on Industrial Process Tomography, 2005b Aizu, Japan. 651-656.
- [189] SMOLIK, W. T. Accelerated Levenberg-Marquardt Method With an Optimal Step Length in Electrical Capacitance Tomography. IEEE International Conference on Imaging Systems and Techniques (IST 2010) Proceedings, July 1-2, 2010b Thessaloniki, Greece. 204-209.
- [190] SMOLIK, W. T., KŁOS, M. & SZABATIN, R. Single-Shot Charge-Discharge Circuit for Dynamic Electrical Capacitance Tomography. The 7th International Symposium on Measurement Techniques for Multiphase Flows, ISMTMF'2011, September 17-19, 2011Tianjin, China.
- [191] SMOLIK, W. T, OLSZEWSKI, T., RADZIK, B. & SZABATIN, R. 2012. Switch-Less Charge-Discharge Circuit for Electrical Capacitance Volume Tomograph ET4. 6th International Symposium on Process Tomography. Cape Town, RPA,
- [192] SMOLIK, W. T. & RADOMSKI, D. 2009. Performance evaluation of the iterative image reconstruction algorithm with sensitivity matrix updating based on real measurements for electrical capacitance tomography. Meas. Sci. Technol., 20, 115502 (12pp).
- [193] SMOLIK, W. T. & RADOMSKI, D. An Application of a Regular Square Mesh in a Forward Problem Solver in Electrical Capacitance Tomography, IEEE International Conference on Imaging Systems and Techniques (IST 2011) Proceedings, May 17-18, 2011 Batu Feringhi, Penang, Malaysia. 104-107.
- [194] SMOLIK, W. T. & SZABATIN, R. Non-Invasive Imaging of Dynamic Processes in Air-Lift Chemical Reactor Using Electrical Capacitance Tomograph. 4th International Workshop on Process Tomography (IWPT-4), September 21-22, 2011 Chengdu, China.
- [195] SOLEIMANI, M. 2006. Computational Aspects of Soft Field Tomography (Preface). International Journal for Information and Systems Science, 2, 452.
- [196] SOLEIMANI, M., MITCHELL, C. N., BANASIAK, R., WAJMAN, R. & ADLER, A. 2009. Four-dimensional electrical Capacitance tomography imaging using experimental data. Progress In Electromagnetics Research PIER., 90, 171-186.
- [197] STACHURSKI, A. 2009. Wprowadzenie do optymalizacji, Warszawa, Oficyna Wydawnicza Politechniki Warszawskiej.
- [198] STARZYŃSKI, J. 2005. Laboratorium podstaw elektromagnetyzmu. Praca zbiorowa, Warszawa, Oficyna Wydawnicza Politechniki Warszawskiej.
- [199] SYLVESTER, J. & UHLMANN, G. 1987. A global uniqueness theorem for an inverse boundary value problem. Ann. of Math., 125, 153-169.
- [200] TAPP, H. & PEYTON, A. J. A state of the art review of electromagnetic tomography. Proceedings of the 3rd World Congress on Industrial Process Tomography, 2003 Banff, Canada. 340-6.
- [201] THOMAS, L. H. 1949. Elliptic Problems in Linear Differential Equations over a Network. Watson Sci., Comput. Lab Report New York: Columbia University.
- [202] TIKHONOV, A. N. & ARSENIN, V. Y. 1977. Solution of Ill-Posed Problems, Washington, DC, Winstons &Sons.
- [203] UHLMANN, G. 2009. Electrical impedance tomography and Calderon's problem. Inverse Problems, 25.
- [204] VAUHKONEN, M., LIONHEART, W. R. B., HEIKKINEN, L M, VAUHKONEN, P. J. & KAIPIO, J. P. 2000. A MATLAB package for the EIDORS project to reconstruct two-dimensional EIT images, Physiol. Meas., 22, 107-111.
- [205] VAUHKONEN, P. J. 2004. Image Reconstruction in Three-Dimensional Electrical Impedance Tomography. PhD, University of Kuopio.
- [206] WAHBA, G. 1983. Bayesian "confidence intervals" for the cross-validated smoothing spline. J. R. Stat. Soc., Ser., B45, 133-150.
- [207] WANG, F., MARASHDEH, Q., FAN, L.-S. & WARSITO, W. 2010. Electrical Capacitance Volume Tomography: Design and Applications. Sensors, 10, 1890-1917.
- [208] WARSITO, W. & FAN, L.-S. 2001a. Measurement of real-time flow structures in gas liquid and gas-liquid-solid flow systems using electrical Capacitance tomography (ECT). Chem. Eng. & Sci., 6455-6462.
- [209] WARSITO, W. Y. & FAN, L.-S. 2001b. Neural Network Based Multi-Criterion Optimization Image Reconstruction Technique For Imaging Two- And Three-Phase Flow Systems Using Electrical Capacitance Tomography. Measurement Science And Technology, 2198-2210.
- [210] WATKINS, D. S. 2002. Fundamentals of Matrix Computations, New York, Wiley.
- [211] WATZENIG, D., BRANDSTATTER, B. & HOLLER, G. 2004. Adaptive regularization parameter adjustment for reconstruction problems. IEEE Trans. Magn., 40, 1116-9.
- [212] WATZENIG, D. & FOX, C. 2009. A review of statistical modelling and inference for electrical Capacitance tomography. Meas. Sci, Technol, 20, 22.
- [213] WEAST, R. C. 1983. CRC Handbook of Chemistry and Physics Florida, CRC Press Inc.
- [214] WERNICK, M. N. & AARSVOLD, J. N. 2004. Emission Tomography. The Fundamentals of PET and SPECT., Elsevier Inc.
- [215] WILLIAMS, K., OLSZEWSKI, T., JONES, M. & SINGH, B. Electrical capacitance tomography of dense phase pneumatic conveying of flyash powder. International Conference on Storing, Handling and Transporting Bulk, 2008 Prague, Czech Republic.
- [216] WLOKA, J. 1953. Tomografia. In: (LUKASZEWICZ, P., STEINHAUS) (ed.) Protokolle des Seminars Anwendungen der Mathematik der Universitat Breslau. University of Wrocław.
- [217] WROBEL, L. C. & ALIABADI, M. H. 2002. The Boundary Element Method, New Jersey, Wiley.
- [218] XIE, C. G., HUANG, S. M., HOYLE, B. S., THORN, R., LENN, C., SNOWDEN, D. & BECK, M. S. 1992. Electrical Capacitance Tomography For Flow Imaging System Model For Development Of Image Reconstruction Algorithms And Design Of Primary Sensors. Circuit Devices and Systems IEE Proceeding, 139, 89-98.
- [219] XIE, C. G., PLASKOWSKI, A. & BECK, M. S. 1989. 8-Electrode Capacitance System For Two-Component Flow Identification - Part 1: Tomographic Flow Imaging. Physical Science, Measurement and Instrumentation, Management and Education, IEE Proceedings, 136, 184-190.
- [220] YAN, H., SHAO, F. Q., XU, H. A. & WANG, S. 1999. Three-Dimensional Analysis Of Electrical Capacitance Tomography Sensing Fields. Meas. Sci. Technol., 717-725
- [221] YANG, W. Q. 1996. Hardware design of electrical capacitance tomography systems. Meas. Sci. Technol., 7, 225-232.
- [222] YANG, W. Q 2010. Design of electrical capacitance tomography sensors. Meas. Sci. Technol., 21, 042001 (13pp).
- [223] YANG, W. Q. & LIU, S. 1999. Electrical capacitance tomography with a square sensor. Electronics Letters, 35, 295-296.
- [224] YANG, W. Q. & PENG, L. H. Review of image reconstruction algorithms for electrical capacitance tomography. 2nd Int. Symp. on Process Tomography in Poland, 11-12 Sept. 2002, 2002 Wrocław, Poland. 123-132.
- [225] YANG, W. Q., STOTT, A. L., BECK, M. S. & XIE, C. G. 1995. Development of capacitance tomographic imaging systems for oil pipeline measurements. Rev. Sci. Instrum., 66, 4326-4332.
- [226] YANG, W. Q. & YORK, T. A. 1997. Capacitance tomography sensor without CMOS switches. Electronics Letters, 33, 1211-1213.
- [227] YANG, W. Q. & YORK, T. A. 1999. New AC - based capacitance tomography system. IEE ProSci. Measurement Technolog, 146.
- [228] YORK, T. A., PHUA, T. N., REICHELT, L.. PAWLOWSKI, A. &. KNEER, R. 2006. A miniature electrical capacitance tomograph. Meas., Sci. Technol., 17, 2119-2129,
- [229] YOUNG, K. F. & FREDERIKSE, H. P. R. 1973. Compilation of the Static Dielectric Constant of Inorganic Solids. J. Phys. Chem. Ref. Data, 2, 313-410.
- [230] ZIENKIEWICZ, O. C., TAYLOR, R. L. & ZHU, J. Z. 2005. The Finite Element Method: Its Basis and Fundamentals, Butterworth-Heinemann.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-0117da97-c53e-4ed9-becb-87fe3399aa78