Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 94, No. 2 | 139--174
Tytuł artykułu

Evolution of a turbidite system in a narrow basin setting: the Ropianka Fm (Campanian–Paleocene) in the Skole Nappe of the Polish Carpathians

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The deposits of the Turonian–Paleocene Ropianka Fm (Skole Nappe, Polish Outer Carpathians) were subdivided into 11 sedimentary facies and subsequently 7 facies associations, corresponding to different depositional environments of the turbidite system. The depositional setting includes a wide range of processes in sedimentary environments from proximal channel-fill deposits to channel-lobe transition zone and a full spectrum of lobe sub-environments, i.e., lobe-axis, off-axis and lobe-fringe, distal-fringe, and interlobe areas. The Campanian–Paleocene evolution of the western Skole Basin shows several progradational-retrogradational cycles and corresponding shifts from carbonate- to siliciclastic-dominated sedimentation, mostly as a result of relative sea-level changes and tectonic activity. The progradational-retrogradational cycles start with the appearance of sand-rich bodies, which tend not to occur up the succession. Four evolutionary stages are distinguished, including 1) the early Campanian marlstone-dominated sedimentation (Kropivnik Fucoid Marl Mbr) in the lower-slope or base-of-slope settings, which correlates with a relative sea-level highstand, 2) the late Campanian progradation of the turbidite system with siliciclastic sedimentation (Turnica Flysch Mbr) and a major sediment distribution path, extending along the northern margin of the basin, 3) the Maastrichtian progradational-retrogradational cycle with the influence of a carbonate source, and 4) mixed carbonate-siliciclastic sedimentation (Leszczyny Mbr) with exotic-bearing mass transport deposits (Makówka Slump Debrites and Babica Clay) and a general trend of cessation of carbonate sedimentation up the sections. The complex facies distribution through the time interval studied is the effect of basin asymmetry with a relatively steep southern slope and a gentler northern slope and the action of multiple sediment sources. The highly aggradational trend of particular depositional elements, variability in calcareous sediment content and palaeotransport directions indicate the presence of morphological obstacles and/or the semi-confined character of the western part of the basin.
Wydawca

Rocznik
Strony
139--174
Opis fizyczny
Bibliogr. 142 poz., fot., rys., wykr.
Twórcy
  • Jagiellonian University, Faculty of Geography and Geology, Institute of Geological Sciences, Gronostajowa 3a, PL-30-387 Kraków, Poland, piotr.lapcik@.uj.edu.pl
Bibliografia
  • 1. Allen, J. R. L., 1982. Sedimentary Structures, their Character and Physical Basis. Volumes 1, 2. Elsevier, Amsterdam, 593 pp; 663 pp.
  • 2. Amy, L. A., Kneller, B. & McCaffrey, W. D., 2000. Evaluating the links between turbidite characteristics and gross system architecture: upscaling insights from the turbidite sheet-system of the Peïra Cava, SE France. SEPM, Gulf Coast Section, 20th Annual Research Conference, Deep-Water Reservoirs of the World, pp. 1-15.
  • 3. Amy, L. A., McCaffrey, W. D. & Kneller, B., 2007. The Peïra Cava Outlier, Annot Sandstones, France. In: Nilsen, T. H., Shew, R. D., Steffens, G. S. & Studlick, J. (eds), Atlas of Deep-Water Outcrops. AAPG, Studies in Geology, 56: 185-187.
  • 4. Arnott, R. W. C. & Hand, B. M., 1989. Bedforms, primary structures and grain fabric in the presence of suspended sediment rain. Journal of Sedimentary Research, 59: 1062-1069.
  • 5. Arthur, M., Dean, W. & Pratt, L., 1988. Geochemical and climatic effects of increased marine organic carbon burial at the Cenomanian/Turonian boundary. Nature, 335: 714-717.
  • 6. Baas, J. H., Best, J. L. & Peakall, J., 2011. Depositional processes, bedform development and hybrid bed formation in rapidly decelerated cohesive (mud-sand) sediment flows. Sedimentology, 58: 1953-1987.
  • 7. Baas, J. H., Best, J. L., Peakall, J. & Wang, M., 2009. A phase diagram for turbulent, transitional, and laminar clay suspension flows. Journal of Sedimentary Research, 79: 162-183.
  • 8. Baas, J. H., Tracey, N. D. & Peakall, J., 2021. Sole marks reveal deep-marine depositional process and environment: implications for flow transformation and hybrid-event-bed models. Journal of Sedimentary Research, 91: 986-1009.
  • 9. Bąk, K., Bąk, M., Górny, Z. & Wolska, A., 2014. Environmental conditions in a Carpathian deep-sea basin during the period preceding Oceanic Anoxic Event 2 - a case study from the Skole Nappe. Geologica Carpathica, 65: 433-450.
  • 10. Barwicz-Piskorz, W. & Rajchel, J., 2012. Radiolarian and agglutinated foraminiferal biostratigraphy of the Paleogene deep-water deposits on the northern margin of the Carpathian Tethys (Skole Unit). Geological Quarterly, 56: 1-24.
  • 11. Bell, D., Stevenson, C. J., Kane, I. A., Hodgson, D. M. & Poyatos-Moré, M., 2018. Topographic controls on the development of contemporaneous but contrasting basin-floor depositional architectures. Journal of Sedimentary Research, 88: 1166-1189.
  • 12. Bernhardt, A., Jobe, Z. R. & Lowe, D. R., 2011. Stratigraphic evolution of a submarine channel-lobe complex system in a narrow fairway within the Magallanes foreland basin, Cerro Toro Formation, southern Chile. Marine and Petroleum Geology, 28: 785-806.
  • 13. Best, J. L. & Bridge, J. S., 1992. The morphology and dynamics of low amplitude bedwaves upon upper stage plane beds and the preservation of planar laminae. Sedimentology, 39: 737-752.
  • 14. Boulesteix, K., Poyatos-Moré, M., Flint, S. S., Hodgson, D. M., Taylor, K. G. & Parry, G. R., 2020. Sedimentary facies and stratigraphic architecture of deep-water mudstone beyond the basin-floor fan sandstone pinchout. Journal of Sedimentary Research, 90: 1678-1705.
  • 15. Bouma, A. H., 1962. Sedimentology of Some Flysch Deposits: A Graphic Approach to Facies Interpretation. Elsevier, Amsterdam, 168 pp.
  • 16. Bouma, A. H., 2000. Coarse-grained and fine-grained turbidite systems as end member models: applicability and dangers. Marine and Petroleum Geology, 17: 137-143.
  • 17. Bown, P. R. & Young, J. R., 1998. Techniques. In: Bown, P. R. (ed.), Calcareous Nannofossil Biostratigraphy. Kluwer Academic Publishers, Dordrecht, pp. 16-28.
  • 18. Bromowicz, J., 1974. Facial variability and lithological character of Inoceramian Beds of the Skole-Nappe between Rzeszów and Przemyśl. Prace Geologiczne, 84: 1-83. [In Polish, with English summary.]
  • 19. Brooks, H. L., Hodgson, D. M., Brunt, R. L., Peakall, J., Hofstra, M. & Flint, S. S., 2018. Deep-water channel-lobe transition zone dynamics: Processes and depositional architecture, an example from the Karoo Basin, South Africa. GSA Bulletin, 130: 1723-1746.
  • 20. Burnett, J. A., 1998. Upper Cretaceous. In: Bown, P. R. (ed.), Calcareous Nannofossils Biostratigraphy. Chapman and Hall, London, pp. 132-199.
  • 21. Burzewski, J., 1966. Les marnes à Baculithes sur le fond de la lithostratigraphie des à Inocérames dans les Carpathes de skibas. Zeszyty Naukowe AGH, Geologia, 7: 89-115. [In Polish, with French summary.]
  • 22. Cartigny, M. J. B., Eggenhuisen, J. T., Hansen, E. W. M. & Postma, G., 2013. Concentration-dependent flow stratification in experimental high-density turbidity currents and their relevance to turbidite facies model: Journal of Sedimentary Research, 83: 1047-1065.
  • 23. Cieszkowski, M., Kysiak, T., Szczęch, M. & Wolska, A., 2017. Geology of the Magura Nappe in the Osielec area with emphasis on an Eocene olistostrome with metabasite olistoliths (Outer Carpathians, Poland). Annales Societatis Geologorum Poloniae, 87: 169-182.
  • 24. Covault, J. A., Sylvester, Z., Hubbard, S. M., Jobe, Z. R. & Sech, R. P., 2016. The stratigraphic record of submarine-channel evolution. The Sedimentary Record, 14: 4-11.
  • 25. Cunha, R. S., Tinterri, R. & Muzzi Magalhaes, P., 2017. Annot Sandstone in the Peïra Cava basin: An example of an asymmetric facies distribution in a confined turbidite system (SE France). Marine and Petroleum Geology, 87: 60-79.
  • 26. Deptuck, M. E., Piper, D. J. W., Savoye, B. & Gervais, A., 2008. Dimensions and architecture of Late Pleistocene submarine lobes off the northern margin of East Corsica. Sedimentology, 55: 869-898.
  • 27. Dżułyński, S., 1996. Erosional and deformational structures in single sedimentary beds: a genetic commentary. Annales Societatis Geologorum Poloniae, 66: 101-189.
  • 28. Dżułyński, S., 2001. Atlas of Sedimentary Structures From the Polish Flysch Carpathians. Institute of Geological Sciences, Jagiellonian University, Kraków, 132 pp.
  • 29. Edwards, A. R., 1963. A preparation technique for calcareous nannoplankton. Micropaleontology, 9: 103-104.
  • 30. Fisher, R. V., 1983. Flow transformations in sediment gravity flows. Geology, 11: 273-274.
  • 31. Fonnesu, M., Felletti, F., Haughton, P. D. W., Patacci, M. & McCaffrey, W. D., 2018. Hybrid event bed character and distribution linked to turbidite system sub-environments: The North Apennine Gottero Sandstone (north-west Italy). Sedimentology, 65: 151-190.
  • 32. Gągała, Ł., Vergés, J., Saura, E., Malata, T., Ringenbach, J., Werner, P. & Krzywiec, P., 2012. Architecture and orogenic evolution of the northeastern Outer Carpathians from cross-section balancing and forward modelling. Tectonophysics, 532-535: 223-241.
  • 33. Gardner, M. H., Borer, J. M., Melick, J. J., Mavilla, N., Dechesne, M. & Wagerle, R. N., 2003. Stratigraphic process-response model for submarine channels and related features from studies of Permian Brushy Canyon outcrops, West Texas. Marine Petroleum Geology, 20: 757-787.
  • 34. Gasiński, M. A. & Uchman, A., 2009. Latest Maastrichtian foraminiferal assemblages from the Husów region (Skole Nappe, Outer Carpathians, Poland). Geologica Carpathica, 60: 283-294.
  • 35. Gedl, E., 1999. Lower Cretaceous palynomorphs from the Skole Nappe (Outer Carpathians, Poland). Geologica Carpathica, 50: 75-90.
  • 36. Geroch, S., Krysowska-Iwaszkiewicz, M., Michalik, M., Prochazka, K., Radomski, A., Radwański, Z., Unrug, Z., Unrug, R. & Wieczorek, J., 1979. Sedimentation of Węgierka Marls (Late Senonian, Polish Flysch Carpathians). Rocznik Polskiego Towarzystwa Geologicznego, 49: 105-134. [In Polish, with English summary.]
  • 37. Golonka, J., Gahagan, L., Krobicki, M., Marko, F., Oszczypko, N. & Ślączka, A., 2006. Plate-tectonic evolution and paleogeography of the Circum-Carpathian region. In: Golonka, J. & Picha, F. J. (eds), The Carpathians and their foreland: Geology and hydrocarbon resources. AAPG Memoir, 84: 11-46.
  • 38. Golonka, J., Krobicki, M., Waśkowska-Oliwa, A., Vašiček, Z. & Skupien, P., 2008. Main paleogeographical elements of the West Outer Carpathians during Late Jurassic and Early Cretaceous times. In: Krobicki, M. (ed.), Utwory przełomu jury i kredy w zachodnich Karpatach fliszowych polsko-czeskiego pogranicza, Jurassica VII, 27-29.09.2008 - Żywiec/Štramberk. Kwartalnik AGH. Geologia, 34: 61-72.
  • 39. Gradstein, F., Ogg, J., Schmitz, M. & Ogg, G., 2020. The Geological Time Scale 2020. Elsevier, Oxford, 1390 pp.
  • 40. Grundvåg, S. A., Johannessen, E. P., Hansen, W. H. & Plink-Björklund, P., 2014. Depositional architecture and evolution of progradationally stacked lobe complexes in the Eocene Central Basin of Spitsbergen. Sedimentology, 61: 535-569.
  • 41. Gucik, S., 1963. Profile of the Lower Cretaceous from Bełwin in the Przemyśl Carpathians. Kwartalnik Geologiczny, 7: 257268. [In Polish, with English summary.]
  • 42. Hansen, L. A. S., Hodgson, D. M., Pontén, A., Bell, D. & Flint, S.,
  • 43. 2019. Quantification of basin-floor fan pinchouts: Examples from the Karoo Basin, South Africa. Frontiers in Earth Science, 7: 1-20.
  • 44. Haq, B. U. 2014. Cretaceous eustasy revisited. Global and Planetary Change, 113: 44-58.
  • 45. Haughton, P. D. W., Barker, S. P. & McCaffrey, W. D., 2003. ‘Linked' debrites in sand-rich turbidite systems - origin and significance. Sedimentology, 50: 459-482.
  • 46. Haughton, P. D. W., Davis, C., McCaffrey, W. & Barker, S. P., 2009. Hybrid sediment gravity flow deposits - classification, origin and significance. In: Amy, L. A., McCaffrey, W. B. & Talling, P. J. (eds), Hybrid and Transitional Submarine Flows. Marine Petroleum Geology, 26: 1900-1918.
  • 47. Hiscott, R. N. & Middleton, G. V., 1980. Fabric of coarse deep-water sandstones, Tourelle Formation, Quebec, Canada. Journal of Sedimentary Petrology, 50: 703-722.
  • 48. Hodgson, D. M., 2009. Distribution and origin of hybrid beds in sand-rich submarine fans of the Tanqua depocentre, Karoo Basin, South Africa. Marine Petroleum Geology, 26: 1940-1956.
  • 49. Hubbard, S. M., Covault, J. A., Fildani, A. & Romans, B. R., 2014. Sediment transfer and deposition in slope channels: Deciphering the record of enigmatic deep-sea processes from outcrop. GSA Bulletin, 126: 857-871.
  • 50. Hubbard, S. M., Jobe, Z. R., Romans, B. W., Covault, J. A., Sylvester, Z. & Fildani, A., 2020. The stratigraphic evolution of a submarine channel: linking seafloor dynamics to depositional products. Journal of Sedimentary Research, 90: 673-686.
  • 51. Hubbard, S. M., Romans, B. W. & Graham, S. A., 2008. Deepwater foreland basin deposits of the Cerro Toro Formation, Magallanes basin, Chile: architectural elements of a sinuous basin axial channel belt. Sedimentology, 55: 1333-1359.
  • 52. Ilstad, T., Marr, J. G., Elverh0i, A. & Harbitz, C. B., 2004. Laboratory studies of subaqueous debris flows by measurements of pore-fluid pressure and total stress. Marine Geology, 213: 403-414.
  • 53. Janocko, M., Nemec, W., Henriksen, S. & Warchoł, M., 2013. The diversity of deep-water sinuous channel belts and slope valley-fill complexes. Marine Petroleum Geology, 41: 7-34.
  • 54. Kane, I. A. & Ponten, A. S. M., 2012. Submarine transitional flow deposits in the Paleogene Gulf of Mexico. Geology, 40: 1119-1122.
  • 55. Kane, I. A., Ponten, A. S. M., Vangdal, B., Eggenhuisen, J. T., Hodgson, D. M. & Spychala, Y. T., 2017. The stratigraphic record and processes of turbidity current transformation across deep-marine lobes. Sedimentology, 64: 1236-1273.
  • 56. Karnkowski, P. & Ołtuszyk, S., 1968. Geological Atlas of the Polish Carpathian foreland 1:500 000. Instytut Geologiczny, Warszawa.
  • 57. Kędzierski, M. & Leszczyński, S., 2013. A paleoceanographic model for the Late Campanian-Early Maastrichtian sedimentation in the Polish Carpathian Flysch basin based on nanno- fossils. Marine Micropaleontology, 102: 34-50.
  • 58. Kenyon, N. H. & Millington, J., 1995. Contrasting deep-sea depositional systems in the Bering Sea, In: Pickering, K. T., Hiscott, R. N., Kenyon, N. H., Ricci Lucchi, F. & Smith, R. D. A. (eds), Atlas of Deep Water Environments: Architectural Style in Turbidite Systems. Chapman and Hall, London, pp. 196-202.
  • 59. Kneller, B. C. & Branney, M. J., 1995. Sustained high-density turbidity currents and the deposition of thick massive sands. Sedimentology, 42: 607-616.
  • 60. Koszarski, L., 1961. Nowe dane o rozwoju serii skolskiej na S od Tarnowa i Wojnicza. Kwartalnik Geologiczny, 5: 994-995. [In Polish.]
  • 61. Kotlarczyk, J., 1978. Stratigraphy of the Ropianka Formation or of Inoceramian beds in the Skole Unit of the Flysch Carpathians. Prace Geologiczne, Polska Akademia Nauk, Oddział w Krakowie, Komisja Nauk Geologicznych, 108: 1-75. [In Polish, with English summary.]
  • 62. Kotlarczyk, J., 1988a. Przewodnik LIX Zjazdu Polskiego Towarzystwa Geologicznego w Przemyślu. Wydawnictwa AGH. Kraków, 298 pp. [In Polish.]
  • 63. Kotlarczyk, J., 1988b. Geology of the Przemyśl Carpathians - “a sketch to the portrait”. Przegląd Geologiczny, 36: 325-333. [In Polish, with English summary.]
  • 64. Kotlarczyk, J., Jerzmańska, A., Świdnicka, E. & Wiszniowska, T., 2006. A framework of ichthyofaunal ecostratigraphy of the Oligocene-Early Miocene strata of the Polish Outer Carpathian Basin. Annales Societatis Geologorum Poloniae, 76: 1-111.
  • 65. Kowalczewska, O. & Gasiński, M. A., 2018. Late Cretaceous foraminiferids from sections in the Zabratówka area (Skole Nappe, Outer Carpathians, Poland). Annales Societatis Geologorum Poloniae, 88: 71-85.
  • 66. Książkiewicz, M., 1962. Geological Atlas of Poland. Stratigraphic and Facial Problems. Fasc - 13 - Cretaceous and Early Tertiary in the Polish External Carpathians, 1:600 000. Wydawnictwa Geologiczne, Warszawa. [In Polish, with English summary.]
  • 67. Łapcik, P., 2017. Facies heterogeneity of a deep-sea depositional lobe complex: case study from the Słonne section of Skole Nappe, Polish Outer Carpathians. Annales Societatis Geologorum Poloniae, 87: 301-324.
  • 68. Łapcik, P., 2018. Sedimentary processes and architecture of Upper Cretaceous deep-sea channel deposits: a case from the Skole Nappe, Polish Outer Carpathians. Geologica Carpathica, 69: 71-88.
  • 69. Łapcik, P., 2019. Facies anatomy of a progradational submarine channelized lobe complex: semi-quantitative analysis of the Ropianka Formation (Campanian-Paleocene) in Hucisko Jawornickie section, Skole Nappe, Polish Carpathians. Acta Geologica Polonica, 69: 111-141.
  • 70. Łapcik, P., 2023. Transitional flow deposits on submarine lobe flank (Veřovice and Lhoty Fms, Albian - Cenomanian, Polish Outer Carpathians). Sedimentary Geology, 445: 106329.
  • 71. Łapcik, P., Kowal-Kasprzyk, J. & Uchman, A., 2016. Deep- sea mass-flow sediments and their exotic blocks from the Ropianka Formation (Campanian-Paleocene) in the Skole Nappe: a case study of the Wola Rafałowska section (SE Poland). Geological Quarterly, 60: 301-316.
  • 72. Leclair, S. F. & Arnott, R. W. C., 2005. Parallel lamination formed by high-density turbidity currents. Journal of Sedimentary Research, 75: 1-5.
  • 73. Leszczyński, S., 2003. Bioturbation structures in the Holovnia Siliceous Marls (Turonian-Lower Santonian) in Rybotycze (Polish Carpathians). Annales Societatis Geologorum Poloniae, 73: 103-122.
  • 74. Leszczyński, S., 2004. Bioturbation structures of the Kropivnik Fucoid Marls (Campanian-lower Maastrichtian) of the Huwniki - Rybotycze area (Polish Carpathians). Geological Quarterly, 48: 35-60.
  • 75. Leszczyński, S., Malik, K. & Kędzierski, M., 1995. New data on lithofacies and stratigraphy of the siliceous and fucoid marl of the Skole Nappe (Cretaceous, Polish Carpathians). Annales Societatis Geologorum Poloniae, 65: 43-62. [In Polish, with English summary.]
  • 76. Lowe, D. R., 1982. Sediment gravity flows, II. Depositional models with special reference to the deposits of high-density turbidity currents. Journal of Sedimentary Petrology, 52: 279-297.
  • 77. Lowe, D. R. & Guy, M., 2000. Slurry-flow deposits in the Britannia Formation (Lower Cretaceous), North Sea: a new perspective on the turbidity current and debris flow problem. Sedimentology, 47: 31-70.
  • 78. Lowe, D. R., Guy, M. & Palfrey, A., 2003. Facies of slurry-flow deposits, Britannia Formation (Lower Cretaceous), North Sea: implications for flow evolution and deposit geometry. Sedimentology, 50: 45-80.
  • 79. Malata, T., 1996. Analysis of standard lithostratigraphic nomenclature and proposal of division for Skole unit in the Polish Flysch Carpathians. Geological Quarterly, 40: 543-554.
  • 80. Malata, T. & Poprawa, P., 2006. Evolution of the Skole Subbasin. In: Oszczypko, N., Uchman, A. & Malata, E. (eds), Palaeotectonic Evolution of the Outer Carpathian and Pieniny Klippen Belt Basins. Instytut Nauk Geologicznych Uniwersytetu Jagiellońskiego, Kraków, pp. 101-110. [In Polish, with English abstract.]
  • 81. Marciniec, P., Zimnal, Z. & Neścieruk, P., 2006. Szczegółowa mapa geologiczna Polski w skali 1:50 000, Arkusz Wojnicz (1000). Państwowy Instytut Geologiczny. [In Polish.]
  • 82. Marciniec, P., Zimnal, Z. & Neścieruk, P., 2014. Objaśnienia do szczegółowej mapy geologicznej Polski 1:50 000, Arkusz Wojnicz (1000). Państwowy Instytut Geologiczny - Państwowy Instytut Badawczy, Warszawa, 67 pp. [In Polish.]
  • 83. Marini, M., Salvatore, M., Ravnas, R. & Moscatelli, M., 2015. A comparative study of confined vs. semi-confined turbidite lobes from the Lower Messinian Laga Basin (Central Apennines, Italy): Implications for assessment of reservoir architecture. Marine and Petroleum Geology, 63: 142-165.
  • 84. Martin, C., Young, C. A., Valluzzi, L. & Duarte, C. M., 2022. Ocean sediments as the global sink for marine micro- and mesoplastics. Limnology and Oceanography, 7: 235-243.
  • 85. Mayall, M., Jones, E. & Casey, M., 2006. Turbidite channel reservoirs - Key elements in facies prediction and effective development. Marine Petroleum Geology, 23: 821-841.
  • 86. Morris, S. A., Kenyon, N. H., Limonov, A. F. & Alexander, J., 1998. Downstream changes of large-scale bedforms in turbidites around the Valencia channel mouth, north-west Mediterranean: Implications for palaeoflow reconstruction. Sedimentology, 45: 365-377.
  • 87. Mulder, T., 2011. Gravity processes and deposits on continental slope, rise and abyssal plains. In: Hüeneke, H. & Mulder, T. (eds), Deep-Sea Sediments. Developments in Sedimentology, 63: 25-148.
  • 88. Mutti, E., 1992. Turbidite Sandstones. San Donato, Milanese, Universita di Parma, Agip, 275 pp.
  • 89. Mutti, E., Bernoulli, D., Ricci Lucchi, F. & Tinterri, R., 2009. Turbidites and turbidity currents from Alpine ‘flysch' to the exploration of continental margins. Sedimentology, 56: 267-318.
  • 90. Mutti, E. & Normark, W. R., 1987. Comparing examples of modern and ancient turbidite systems: problems and concepts. In: Leggett, J. K. & Zuffa, G. G. (eds), Marine Clastic Sedimentology. Springer, the Netherlands, pp. 1-38.
  • 91. Muzzi Magalhaes, P. & Tinterri, R., 2010. Stratigraphy and depositional setting of slurry and contained (reflected) beds in the Marnoso-arenacea Formation (Langhian-Serravallian) Northern Apennines, Italy. Sedimentology, 57: 1685-1720.
  • 92. Normark, W. R., Piper, D. J. W. & Hess, G. R., 1979. Distributary channels, sand lobes, and mesotopography of Navy submarine fan, California Borderland, with applications to ancient fan sediments. Sedimentology, 26: 749-774.
  • 93. Oszczypko, N., 2006. Position of the Polish Outer Carpathians in the Alpine arc and their stages of development. In: Oszczypko, N., Uchman, A. & Malata, E. (eds), Palaeotectonic Evolution of the Outer Carpathian and Pieniny Klippen Belt Basins. Instytut Nauk Geologicznych Uniwersytetu Jagiellońskiego, Kraków, pp. 9-18. [In Polish, with English abstract.]
  • 94. Owen, G., Moretti, M. & Alfaro, P., 2011. Recognising triggers for soft-sediment deformation: current understanding and future directions. Sedimentary Geology, 235: 133-140.
  • 95. Palanques, A., Kenyon, N. H., Alonso, B. & Limonov, A. F., 1995. Erosional and depositional patterns in the Valencia channel mouth: An example of a modern channel-lobe transition zone. Marine Geophysical Research, 18: 103-118.
  • 96. Paul, K. M., 1876. Grundzüge der Geologie der Bukowina. Jahrbuch der Kaiserlich Königlichen Geologischen Reichs-Anstalt, 26: 263-320.
  • 97. Peakall, J., Best, J., Baas, J. H., Hodgson, D. M., Clare, M. A., Talling, P. J., Dorrel, R. M. & Lee, D. R., 2020. An integrated process-based model of flutes and tool marks in deep-water environments: Implications for palaeohydraulics, the Bouma sequence and hybrid event beds. Sedimentology, 67: 1601-1666.
  • 98. Perch-Nielsen, K., 1985. Mesozoic calcareous nannofossils. In: Bolli, H. H., Saunders, J. B. & Perch-Nielsen, K., (eds), Plankton Stratigraphy. Cambridge University Press, Cambridge 1, pp. 329-426.
  • 99. Pickering, K. T. & Hiscott, R. N., 2015. Deep Marine Systems: Processes, Deposits, Environments, Tectonics and Sedimentation. John Wiley & Sons, 672 pp.
  • 100. Pickering, K. T., Hiscott, R. N., Kenyon, N. H., Ricci Lucchi, F. & Smith, R. D. A., 1995. Atlas of Deep Water Environments: Architectural Style in Turbidite Systems. Chapman and Hall, London, 334 pp.
  • 101. Piper, D. J. W., Stow, D. A. V. & Normark, W. R., 1984. The Laurentian Fan: Sohm Abyssal Plain. Geo-Marine Letters, 3: 141-146.
  • 102. Polish Geological Institute - National Research Institute, LiDAR data. https://baza.pgi.gov.pl/cbdg/geoportal [27.11.2023]. Polish Geological Institute - National Research Institute, boreholes data. https://otworywiertnicze.pgi.gov.pl [27.11.2023].
  • 103. Prélat, A. & Hodgson, D. M., 2013. The full range of turbidite bed thickness patterns in submarine lobes: controls and implications. Journal of the Geological Society, 170: 209-214.
  • 104. Prélat, A., Hodgson, D. M. & Flint, S. S., 2009. Evolution, architecture and hierarchy of distributary deep-water deposits: a high-resolution outcrop investigation from the Permian Karoo Basin, South Africa. Sedimentology, 56: 2132-2154.
  • 105. Pszonka, J., Wendorff, M. & Godlewski, P., 2023. Sensitivity of marginal basins in recording global icehouse and regional tectonic controls on sedimentation. Example of the Cergowa Basin, (Oligocene) Outer Carpathians. Sedimentary Geology, 444: 106326.
  • 106. Rajchel, J., 1990. Lithostratigraphy of the Upper Paleocene and Eocene sediments from the Skole Units. Zeszyty Naukowe AGH, Geologia, 48: 1-112. [In Polish, with English summary.]
  • 107. Rajchel, J. & Uchman, A., 1998. Ichnological record of palae- oenvironment in the transgressive Miocene deposits of the Skole Unit in the Dubiecko region (SE Poland). Przegląd Geologiczny, 46: 523-529. [In Polish, with English summary.]
  • 108. Reading, H. G. & Richards, M., 1994. Turbidite systems in deep-water basin margins classified by grain size and feeder system. AAPG Bulletin, 78: 792-822.
  • 109. Schieber, J., Micläus, C., Seserman, A., Liu, B. & Teng, J., 2019. When a mudstone was actually a “sand”: Results of a sedimentological investigation of the bituminous marl formation (Oligocene), Eastern Carpathians of Romania. Sedimentary Geology, 384: 12-28.
  • 110. Schieber, J., Southard, J. B. & Schimmelmann, A., 2010. Lenticular shale fabrics resulting from intermittent erosion of water-rich muds - interpreting the rock record in the light of recent flume experiments. Journal of Sedimentary Research, 80: 119-128.
  • 111. Shanmugam, G. & Moiola, R., 1995. Reinterpretation of depositional processes in a classic flysch sequence (Pennsylvanian Jackfork Group), Ouachita Mountains, Arkansas and Oklahoma. AAPG Bulletin, 79: 672-695.
  • 112. Ślączka, A. & Kaminski, M. A., 1998. A guidebook to excursions in the Polish Flysch Carpathians. Grzybowski Foundation Special Publication, 6: 1-171.
  • 113. Ślączka, A., Kruglow, S., Golonka, J., Oszczypko, N. & Popadyuk, I., 2006. The general geology of the Outer Carpathians, Poland, Slovakia, and Ukraine. In: Golonka, J. & Picha, F. (eds), The Carpathians and their Foreland: Geology and Hydrocarbon Resources. AAPG Memoir, 84: 221-258.
  • 114. Ślączka, A., Renda, P., Cieszkowski, M., Golonka, J. & Nigro, F., 2012. Sedimentary basin evolution and olistolith formation: The case of Carpathian and Sicilian region. Tectonophysics, 568-569: 306-319.
  • 115. Słomka, T., Malata, T., Leśniak, T., Oszczypko, N. & Poprawa, P., 2006. Evolution of the Silesian and Subsilesian Basins. In: Oszczypko, N., Uchman, A. & Malata, E. (eds), Palaeotectonic Evolution of the Outer Carpathian and Pieniny Klippen Belt Basins. Instytut Nauk Geologicznych Uniwersytetu Jagiellońskiego, Kraków, pp. 111-131. [In Polish, with English abstract.]
  • 116. Southard, J. B., 1991. Experimental determination of bedform stability. Annual Review of Earth and Planetary Sciences, 19: 423-455.
  • 117. Spychala, Y. T., Hodgson, D. M., Prélat, A., Kane, I. A., Flint, S. S. & Mountney, N., 2017. Frontal and lateral submarine lobe fringes: comparing sedimentary facies, architecture and flow processes. Journal of Sedimentary Research, 87: 75-96.
  • 118. Stevenson, C. J., Jackson, C. A. L., Hodgson, D. M., Hubbard, S. M. & Eggenhuisen, J., 2015. Sediment bypass in deep-water systems. Journal of Sedimentary Research, 85: 1058-1081.
  • 119. Stevenson, C. J., Peakall, J., Hodgson, D. M., Bell, D. & Privat, A., 2020. TB or not TB: Banding in turbidite sandstones. Journal of Sedimentary Research, 90: 821-842.
  • 120. Stevenson, C. J., Talling, P. J., Masson, D. G., Sumner, E. J., Frenz, M. & Wynn, R. B., 2014. The spatial and temporal distribution of grain-size breaks in turbidites. Sedimentology, 61: 1120-1156.
  • 121. Stow, D. A. V. & Bowen, A. J., 1978. Origin of lamination in deep sea, fine-grained sediments. Nature, 274: 324-328.
  • 122. Stow, D. A. V. & Bowen, A. J., 1980. A physical model for the transport and sorting of fine-grained sediment by turbidity currents. Sedimentology, 27: 31-46.
  • 123. Stow, D. A. & Johansson, M., 2000. Deep-water massive sands: Nature, origin and hydrocarbon implications. Marine Petroleum Geology, 17: 145-174.
  • 124. Strzeboński, P., 2015. Late Cretaceous-Early Paleogene sandy- to-gravelly debris flows and their sediments in the Silesian Basin of the Alpine Tethys (Western Outer Carpathians, Istebna Formation). Geological Quarterly, 59: 195-214.
  • 125. Strzeboński, P., 2022. Contrasting styles of siliciclastic flysch sedimentation in the Upper Cretaceous of the Silesian Unit, Outer Western Carpathians: sedimentology and genetic implications. Annales Societatis Geologorum Poloniae, 92: 1-22.
  • 126. Strzeboński, P., Kowal-Kasprzyk, J. & Olszewska, B., 2017. Exotic clasts, debris flow deposits and their significance for reconstruction of the Istebna Formation (Late Cretaceous-Paleocene, Silesian Basin, Outer Carpathians). Geologica Carpathica, 68: 562-582.
  • 127. Sumner, E. J., Amy, L. A. & Talling, P. J., 2008. Deposit structure and processes of sand deposition from a decelerating sediment suspension. Journal of Sedimentary Research, 78: 529-547.
  • 128. Sumner, E. J., Talling, P. J. & Amy, L. A., 2009. Deposits of flows transitional between turbidity current and debris flow. Geology, 37: 991-994.
  • 129. Talling, P. J., 2013. Hybrid submarine flows comprising turbidity current and cohesive debris flow: deposits, theoretical and experimental analyses, and generalized models. Geosphere, 9: 460-488.
  • 130. Talling, P. J., Masson, D. G., Sumner, E. J. & Malgesini, G., 2012. Subaqueous sediment density flows: Depositional processes and deposit types. Sedimentology, 59: 1937-2003.
  • 131. Tinterri, R. & Civa, A., 2021. Laterally accreted deposits in low efficiency turbidites associated with a structurally-induced topography (Oligocene Molare Group. Tertiary Piedmont Basin, NW Italy). Journal of Sedimentry Research, 91: 751-772.
  • 132. Tinterri, R., Civa, A., Laporta, M. & Piazza, A., 2020. Turbidites and turbidity currents. In: Scarselli, N., Jürgen, A., Roberts, D. G., Chiarella, D. & Bally, A. W. (eds), Regional Geology and Tectonics, 2nd Ed., Vol. 1: Principles of Geologic Analysis. Elsevier, pp. 441-479.
  • 133. Tinterri, R., Laporta, M. & Ogata, K., 2017. Cross-currents turbidite facies tract in a structurally-confined, asymmetrical mini-basin (Priabonian-Rupelian, Ranzano Sandstone, northern Apennines, Italy). Sedimentary Geology, 352: 63-87.
  • 134. Tinterri, R., Mazza, T. & Muzzi Magalhaes, P., 2022. Contained-reflected megaturbidites of the Marnoso-arenacea Formation (Contessa key bed) and helminthoid flysches (northern Apennines, Italy) and Hecho Group (south-western Pyrenees). Frontiers in Earth Sciences, 10: 817012.
  • 135. Tinterri, R., Muzzi Magalhaes, P., Tagliaferri, A. & Cunha, R. S., 2016. Convolute laminations and load structures in turbidites as indicators of flow reflections and decelerations against bounding slopes. Examples from the Marnoso-arenacea Formation (northern Italy) and Annot Sandstones (south eastern France). Sedimentary Geology, 344: 382-407.
  • 136. Tinterri, R. & Tagliaferri, A., 2015. The syntectonic evolution of foredeep turbidites related to basin segmentation: Facies response to the increase in tectonic confinement (Marnoso-arenacea Formation, Miocene, Northern Apennines, Italy). Marine and Petroleum Geology, 67: 81-110.
  • 137. Uhlig, V., 1888. Ergebnisse geologischer Aufnahmen in den west- galizischen Karpathen. I. Theil. Die Sandsteizone zwischen dem penninischen Klippenzuge und dem Nordrande. Jahrbuch der Kaiserlich-Königlichen Geologischen. Reichsanstalt, 38: 83-264.
  • 138. van Hinsbergen, D. J. J., Torsvik, T. H., Schmid, S. M., Matenco, L. C., Maffione, M., Vissers, R. L. M., Gürer, D. & Spakman, W., 2020. Orogenic architecture of the Mediterranean region and kinematic reconstruction of its tectonic evolution since the Triassic. Gondwana Research, 81: 79-229.
  • 139. Waśkowska, A., Joniec, A., Kotlarczyk, J. & Siwek, P., 2019. The Late Cretaceous Fucoid Marl of the Ropianka Formation in the Kąkolówka Structure (Skole Nappe, Outer Carpathians, Poland) - lithology and foraminiferal biostratigraphy. Annales Societatis Geologorum Poloniae, 89: 259-284.
  • 140. Wynn, R. B., Kenyon, N. H., Masson, D. G., Stow, D. A. & Weaver, P. P., 2002. Characterization and recognition of deep-water channel-lobe transition zones: AAPG Bulletin, 86: 1441-1446.
  • 141. Young, J. R., Bown, P. R. & Lees, J. A., 2022. Nannotax3 website. International Nannoplankton Association. www.mikrotax. org/Nannotax3 [27.11.2023.]
  • 142. Żytko, K., Gucik, S., Ryłko, W., Oszczypko, N., Zając, R., Garlicka, I., Nemčok, J., Eliáš, M., Menčík, E., Dvořák, J., Straník, Z., Rakús, M. & Matejovska, O., 1989. Geological map of the Western Outer Carpathians and their foreland without Quaternary formations. In: Poprawa, D. & Nemčok, J. (eds), Geological Atlas of the Western Outer Carpathians. Polish Geological Institute.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-00c3712d-4555-4c76-b916-6b89f5ce783d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.