Czasopismo
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Warianty tytułu
Języki publikacji
Abstrakty
Hydrogeochemical and microbiological parameters of groundwater samples in the Paipayales agricultural community in western Ecuador were studied to evaluate groundwater origin, contamination, and suitability for domestic use and irrigation. The water wells studied are typically shared by multiple families which account for 37% of the total community population. A total of 31 parameters of water samples from the wells used by the community were analysed by four laboratories at the ESPOL University. The parameters analysed included microbiological and chemical compounds, along with physical characteristics typically influencing water quality. As regards the World Health Organization (WHO), U.S. Environmental Protection Agency (EPA), and Ecuadorian standards, all samples failed to meet the required concentrations for at least one compound. The chemical analysis showed eight elements (cadmium, aluminium, ammonia, iron, manganese, chloride, and bromide) exceeded the maximum limits for drinking water in at least one well. Seventy percent of sampled wells failed to meet the maximum permissible limits for at least one chemical parameter. Water in all wells showed the presence of microbiological contaminants. The high natural groundwater salinity limits the ability to use this groundwater for irrigation purposes. Water in open and closed wells shows different hydrochemical and microbiological patterns. The presence of domestic animals and the lack of protection for wells may influence the quality of water. It is highly recommended that the authorities increase water supply and storage capacity to improve the availability of drinkable water in rural communities in the area.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
17--28
Opis fizyczny
Bibliogr. 37 poz., fot., mapy, rys., tab., wykr.
Twórcy
- Escuela Superior Politécnica del Litoral, Facultad de Ciencias de la Vida, 090902, Guayaquil, Ecuador, rvillalba@espol.edu.ec
autor
- Escuela Superior Politécnica del Litoral, Facultad de Ciencias de la Vida, 090902, Guayaquil, Ecuador, pcalle@espol.edu.ec
autor
- Escuela Superior Politécnica del Litoral, Facultad de Ciencias de la Vida, 090902, Guayaquil, Ecuador, marymont@espol.edu.ec
- Escuela Superior Politécnica del Litoral, Facultad de Ciencias de la Vida, 090902, Guayaquil, Ecuador, margonzal@espol.edu.ec
- Escuela Superior Politécnica del Litoral, Centro de Estudios e Investigaciones Estadísticas, 090902, Guayaquil, Ecuador
autor
- Escuela Superior Politécnica del Litoral, Facultad de Ciencias de la Tierra, 090902, Guayaquil, Ecuador, tvitvar@espol.edu.ec
Bibliografia
- Bundschuh, J. et al. (2012) “One century of arsenic exposure in Latin America: a review of history and occurrence from 14 countries,” Science of Total Environment, 429, pp. 2–35. Available at: https://doi.org/10.1016/j.scitotenv.2011.06.024.
- Calderón, M.F. et al. (2016) “Uso de los Sistemas de Información Geográfica (SIG) como herramienta de aprendizaje aplicado en el proceso de integración Universidad-Comunidad [Geographic Information Systems (GIS) as applied learning tool in the Community-University integration process],” in A.L. Fereiro and M.C. (eds.) Gericota TICs para el Aprendizaje de la Ingeniería. Proceedings of 14th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering Innovations for Global Sustainability,” San José, Costa Rica 20–22.7.2016. Available at: https://doi.org/10.18687/LACCEI2016.1.1.094.
- Cohen, J. 2013. Statistical power analysis for the behavioral sciences. 2nd edn. Routledge: Taylor & Francis Group. Available at: https://doi.org/10.4324/9780203771587.
- Fuentes, M. et al. (2010) “Isolation of pesticide-degrading actinomy-cetes from a contaminated site: Bacterial growth, removal and dichlorination of organochlorine pesticides,” International Biodeterioration & Biodegradation, 64(6), pp. 434–441. Available at: https://doi.org/10.1016/j.ibiod.2010.05.001.
- Gibbs, J.R. (1970) “Mechanisms controlling world water chemistry,” Science, 80(170), pp. 1088–1090. Available at: https://doi.org/10.1126/science.170.3962.1088.
- Guzmán, P. et al. (2016) “Hydrological connectivity of alluvial Andean valleys: A groundwater/surface-water interaction case study in Ecuador,” Hydrogeology Journal, 24(4), pp. 955–969. Available at: https://doi.org/10.1007/s10040-015-1361-z.
- Herrera-Franco, G. et al. (2020) “Groundwater resilience assessment in a communal coastal aquifer system. The Case of Manglaralto in Santa Elena, Ecuador,” Sustainability, 19, 8290. Available at: https://doi.org/10.3390/su12198290.
- Huang, L. et al. (2020) “Heavy metals distribution, sources, and ecological risk assessment in Huixian Wetland, South China,” Water, 12(2), 431. Available at: https://doi.org/10.3390/w12020431.
- Igbokwe, I.O., Igwenagu, E. and Igbokwe, N.A. (2019) “Aluminium toxicosis: A review of toxic actions and effects,” Interdisciplinary Toxicology, 12(2), pp. 45–70. Available at: https://doi.org/10.2478/intox-2019-0007.
- Ikeda, M. et al. (2004) “Dietary cadmium intake in polluted and non-polluted areas in Japan in the past and in the present,” International Archives of Occupational and Environmental Health, 77(4), pp. 227–234. Available at: https://doi.org/10.1007/s00420-003-0499-5.
- INEN (2020) “Agua potable. Requisitos [Drinking water. Requirements],” Norma técnica, 1108, 6th edn. Quito: Instituto Nacional Ecuatoriano de Normalización. Available at: https://www.hwts.info/document/2c955d81/norma-tecnica-ecuatoriana-1108-agua-potable-requisitos (Accessed: June 26, 2021).
- Jiménez-Oyola, S. et al. (2021) “Probabilistic multi-pathway human health risk assessment due to heavy metal(loid)s in a traditional gold mining area in Ecuador,” Ecotoxicology and Environmental Safety, 224, 112629. Available at: https://doi.org/10.1016/j.ecoenv.2021.112629.
- Knappett, P.S.K. et al. (2011) “Impact of population and latrines on fecal contamination of ponds in rural Bangladesh,” Science of The Total Environment, 409(17), pp. 3174–3182. Available at: https://doi.org/10.1016/j.scitotenv.2011.04.043.
- Loaiciga, H.A. et al. (1992) “Review of ground-water quality monitoring network design,” Journal of Hydraulic Engineering, 118(1), pp. 11–37. Available at: https://doi.org/10.1061/(ASCE)0733-9429(1992)118:1(11).
- Machado, R.M.A. and Serralheiro, R.P. (2017) “Soil salinity: Effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization,” Horticulturae, 3(2), 30. Available at: https://doi.org/10.3390/horticulturae3020030.
- Malek, A., Kahoul, M. and Bouguerra, H. (2019) “Groundwater’s physicochemical and bacteriological assessment: Case study of well water in the region of Sedrata, North-East of Algeria,” Journal of Water and Land Development, 41, pp. 91–100. Available at: https://doi.org/10.2478/jwld-2019-0032.
- Martínez-García, J., Jaramillo-Colorado, B. and Fernández-Maestre, R. (2019) “Water quality of five rural Caribbean towns in Colombia,” Environmental Earth Sciences, 78, 575. Available at: https://doi.org/10.1007/s12665-019-8580-x.
- Marandi, A. and Shand, P. (2018) “Groundwater chemistry and the Gibbs diagram,” Applied Geochemistry, 97, pp. 209–212. Available at: https://doi.org/10.1016/j.apgeochem.2018.07.009.
- Mthembu, P. et al. (2022) “Integration of heavy metal pollution indices and health risk assessment of groundwater in semi-arid coastal aquifers, South Africa,” Exposure and Health, 14(10), pp. 487–502. Available at: https://doi.org/10.1007/s12403-022-00478-0.
- Osada, H. (2019) “Discovery and applications of nucleoside antibiotics beyond polyoxin,” Journal of Antibiotics, 72, pp. 855–864. Available at: https://doi.org/10.1038/s41429-019-0237-1.
- Otero, X. et al. (2016) “Arsenic in rice agrosystems (water, soil and rice plants) in Guayas and Los Ríos provinces, Ecuador,” Science of The Total Environment, 573, pp. 778–787. Available at: https://doi.org/10.1016/j.scitotenv.2016.08.162.
- Paz, A. et al. (2020) “Prevention, mitigation and adaptation strategies for soil salinization at farm level,” in EIP-Agri Focus Group Soil salinisation. Final Report. EIP-Agri. European Commission. Available at: https://ec.europa.eu/eip/agriculture/sites/default/files/eip-agri_fg_soil_salinisation_final_report_2020_en.pdf (Accessed: May 02, 2022).
- PDOT (2015) Plan de desarrollo y ordenamiento territorial del cantón Santa Lucia [Territorial management and development plan for Santa Lucia]. Available at: https://ccpd-santalucia-gob.org/wp-content/uploads/2022/02/PDyOT-SANTA-LUCIA-2014_2025_ACTUALIZADO_2016_16-04-2016_11-52-35.pdf (Accessed: May 02, 2022).
- Rawat, K.S., Singh, S.K. and Gautam, S.K. (2018) “Assessment of groundwater quality for irrigation use: A peninsular case study,” Applied Water Science, 8, 233. Available at: https://doi.org/10.1007/s13201-018-0866-8.
- Ribeiro, L., Pindo, J. and Dominguez-Granda, L. (2017) “Assessment of groundwater vulnerability in the Daule aquifer, Ecuador, using the susceptibility index method,” Science of The Total Environment, 574, pp. 1674–1683. Available at: https://doi.org/10.1016/j.scitotenv.2016.09.004.
- Roberts, T. (2014) “Cadmium and phosphorous fertilizers: The issues and the science,” Procedia Engineering, 83, pp. 52–59. Available at: https://doi.org/10.1016/j.proeng.2014.09.012.
- RStudio Team 2020. RStudio: Integrated Development for R. RStudio, PBC, Boston, MA. Available at: http://www.rstudio.com/ (Accessed: June 26, 2021).
- Ruiz Pico, A. et al. (2019) “Hydrochemical characterization of groundwater in the Loja Basin (Ecuador),” Applied Geochemistry, 104. Available at: https://doi.org/10.1016/j.apgeochem.2019.02.008.
- Simler, R. (2009) Diagrammes. [Computer program]. Available at: http://www.lha.univ-avignon.fr/LHA-Logiciels.htm (Accessed: May 02, 2022).
- Sobhanardakani, S. et al. (2017) “Groundwater quality assessment using the water quality pollution indices in Toyserkan Plain,” Environmental Health Engineering and Management Journal, 4(1), pp. 21–27. Available at: https://doi.org/10.15171/EHEM.2017.04.
- Takser, L. et al. (2004) “Manganese levels during pregnancy and at birth: relation to environmental factors and smoking in a South-west Quebec population,” Environmental Research, 95(2), pp. 119–125. Available at: https://doi.org/10.1016/j.envres.2003.11.002.
- U.S. EPA (2017) “Chapter 3: Water quality criteria,” in Water quality criteria standards handbook. Washington, DC: U.S. Environmental Protection Agency. Available at: https://www.epa.gov/sites/default/files/2014-10/documents/handbook-chapter3.pdf (Accessed: May 02, 2022).
- WHO (2014) “Chemicals of major public health concern,” Regional Assessment Report, 4. Brazzaville: World Health Organization. Regional Office for Africa. Available at: https://www.afro.who.int/sites/default/files/2017-06/9789290232810.pdf (Accessed: July 26, 2021).
- WHO (2017a) Guidelines for drinking-water quality: Fourth edition incorporating the first addendum. Geneva: World Health Organization. 4 th edn. Available at: https://www.who.int/publications/i/item/9789241549950 (Accessed: July 26, 2021).
- WHO (2017b) Mercury and health. Geneva: World Health Organization. Available at: https://www.who.int/news-room/fact-sheets/detail/mercury-and-health (Accessed: July 26, 2021).
- Wilcox, L.V. (1958) “Determining the quality of irrigation water,” Agriculture Information Bulletin, 197. US Department of Agriculture.
- Wingfield, S. et al. (2021) Challenges to water management in Ecuador: Legal authorization, quality parameters, and socio-political responses,” Water, 13(8), 1017. Available at: https://doi.org/10.3390/w13081017.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-00a26fa9-31a1-438e-ac22-9d3a67b65918