Czasopismo
2024
|
Vol. 72, nr 5
|
art. no. e151050
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Warianty tytułu
Języki publikacji
Abstrakty
The exponential decay of transient values in nonlinear continuous-time standard and fractional orders with linear dynamical positive feedback systems and of positive linear parts is investigated. Sufficient conditions for the exponential decay of transient values in this class of positive nonlinear systems are established. Procedures for the computation of gains characterizing the class of nonlinear elements are given and illustrated in simple examples.
Rocznik
Tom
Strony
art. no. e151050
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
- Bialystok University of Technology, Faculty of Electrical Engineering, Wiejska 45D, 15-351 Białystok, Poland, kaczorek@ee.pw.edu.pl
Bibliografia
- [1] A. Berman and R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM, 1994.
- [2] L. Farina and S. Rinaldi, Positive Linear Systems; Theory and Applications, New York: J. Wiley, 2000.
- [3] T. Kaczorek, Selected Problems of Fractional Systems Theory, Berlin: Springer 2011.
- [4] T. Kaczorek and K. Rogowski, Fractional Linear Systems and Electrical Circuits, Cham: Springer 2015.
- [5] W. Mitkowski, “Dynamical properties of Metzler systems,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 56, no. 4, pp. 309–312, 2008.
- [6] L. Sajewski, “Stabilization of positive descriptor fractional discrete-time linear systems with two different fractional orders by decentralized controller,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 65, no. 5, pp. 709714, 2017, doi: 10.1515/bpasts-2017-0076.
- [7] P. Ostalczyk, Discrete Fractional Calculus, River Edgle, NJ: World Scientific, 2016.
- [8] I. Podlubny, Fractional Differential Equations, San Diego, USA: Academic Press, 1999.
- [9] T. Kaczorek, “Absolute stability of a class of fractional positive nonlinear systems,” Int. J. Appl. Math. Comput. Sci., vol. 29, no. 1, pp. 93–98, 2019, doi: 10.2478/amcs-2019-0007.
- [10] T. Kaczorek, “Analysis of positivity and stability of fractional discrete-time nonlinear systems,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 64, no. 3, pp. 491–494, 2016, doi: 10.1515/bpasts-2016-0054.
- [11] T. Kaczorek, “Global stability of nonlinear feedback systems with fractional positive linear parts,” Int. J. Appl. Math. Comput. Sci., vol.30, no.3, pp. 493–499, 2020, doi: 10.34768/amcs-2020-0036.
- [12] T. Kaczorek, “Global stability of positive standard and fractional nonlinear feedback systems,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no.2, pp. 285–288, 2020, doi: 10.24425/bpasts.2020.133112.
- [13] T. Kaczorek, “Global stability of nonlinear feedback systems with positive linear parts,” Int. J. Nonlinear Sci. Num. Simul., vol. 20, no 5, pp. 575–579, 2019, doi: 10.1515/ijnsns-2018-0189.
- [14] T. Kaczorek, “Positive linear systems with different fractional orders,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 58, no. 3, pp. 453–458, 2010, doi: 10.2478/v10175-010-0043-1.
- [15] T. Kaczorek, “Positive linear systems consisting of n subsystems with different fractional orders, IEEE Trans. Circ. Syst., vol. 58, no. 6, pp. 1203–1210, 2011, doi: 10.1109/TCSI.2010.2096111.
- [16] T. Kaczorek, “Stability of fractional positive nonlinear systems,” Arch. Control Sci., vol. 25, no. 4, pp. 491–496, 2015, doi: 10.1515/acsc-2015-0031.
- [17] T. Kaczorek and A. Ruszewski, “Global stability of discrete-time nonlinear systems with descriptor standard and fractional positive linear parts and scalar feedbacks,” Arch. Control Sci., vol. 30, no. 4, pp. 667–681, 2020, doi: 10.24425/acs.2020.135846.
- [18] A. Ruszewski, “Stability of discrete-time fractional linear systems with delays,” Arch. Control Sci., vol. 29, no. 3, pp. 549–567, 2019, doi: 10.24425/acs.2019.130205.
- [19] A.M. Lyapunov, Obscaja zadaca ob ustoicivosti dvizenija, Gostechizdat, Moskwa, 1963 (in Russian).
- [20] H. Leipholz, Stability Theory, New York Academic Press, 1970.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-00a0d7a7-7afc-4ff5-aad2-1dce1eb16467