Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | R. 96, nr 2 | 174--177
Tytuł artykułu

Electrostatic fabrication of polymer nanofibers

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
PL
Elektrostatyczne wytwarzanie nanowłókien polimerowych
Języki publikacji
EN
Abstrakty
EN
Fabrication process of nanofibers from the liquid polymer solution using electrospinning is described in the paper. In the experiments, polyvinylidene fluoride (PVDF) and dimethylformamide (DMF) were used as a polymeric material and a solvent, respectively. Additionally, the results of the measurements of diameters of obtained fibers, current-voltage characteristics of the process and calculation of resistivity of liquid polymer are presented.
PL
W pracy przedstawiono proces elektrostatycznego wytwarzania nanowłókien z roztworu ciekłego polimeru. W procesie elektroprzędzenia w roli polimeru i rozpuszczalnika użyto odpowiednio polifluorek winylidenu (PVDF) i dimetyloformamid (DMF). Dodatkowo badania obejmowały pomiary średnic otrzymanych włókien, charakterystyk prądowo-napięciowych procesu oraz wyznaczenie rezystywności ciekłego polimeru.
Wydawca

Rocznik
Strony
174--177
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
  • Politechnika Wrocławska, Katedra Podstaw Elektrotechniki i Elektrotechnologii, Plac Grunwaldzki 13, 50-377 Wrocław, tomasz.czapka@pwr.edu.pl
  • Politechnika Wrocławska, Katedra Podstaw Elektrotechniki i Elektrotechnologii, Plac Grunwaldzki 13, 50-377 Wrocław, tomekkopaniarz@gmail.com
  • Politechnika Wrocławska, Katedra Podstaw Elektrotechniki i Elektrotechnologii, Plac Grunwaldzki 13, 50-377 Wrocław, angelika.wos@pwr.edu.pl
Bibliografia
  • [1] Lin M.F., Xiong J.Q., Wang J.X., Parida K., Lee P.S., Coreshell nanofiber mats for tactile pressure sensor and nanogenerator applications, Nano Energy, 44 (2018), 248-255
  • [2] Chen X., Song Y., Su Z., Chen H., Cheng X., Zhang J., Han M., Zhang H., Flexible fiber-based hybrid nanogenerator for biomechanical energy harvesting and physiological monitoring, Nano Energy, 38 (2017), 43-50
  • [3] Li Z.L., Shen J.L., Abdalla I., Yu J.Y., Ding B., Nanofibrous membrane constructed wearable triboelectric nanogenerator for high performance biomechanical energy harvesting, Nano Energy, 36 (2017), 341-348
  • [4] Zhao, Z., Li, B., Xu, L., Qiao, Y., Wang, F., Xia, Q., Lu, Z.A, Sandwich-Structured Piezoresistive Sensor with Electrospun Nanofiber Mats as Supporting, Sensing, and Packaging Layers A Sandwich-Structured Piezoresistive Sensor with Electrospun Nanofiber Mats as Supporting, Sensing, and Packaging Layers, Polymers, 10 (2018), 1-13
  • [5] Rho K.S., Jeong L., Lee G., Seo B.M., Park Y.J., Hong S.D., Roh S., Cho J.J., Park W.H., Min B.M., Electrospinning of collagen nanofibers: Effects on the behavior of normal human keratinocytes and early-stage wound healing, Biomaterials, 27 (2006), No. 6, 1452-1461
  • [6] Miguel S.P., Ribeiro M.P., Coutinho P., Correia, I.J., Electrospun Polycaprolactone/Aloe Vera_Chitosan Nanofibrous Asymmetric Membranes Aimed for Wound Healing Applications, Polymers, 9 (20187), 1-24
  • [7] Zaviska F., Drogui P., Grasmick A., Azais A., Héran M., Nanofiltration membrane bioreactor for removing pharmaceutical compounds, J. Membr. Sci., 429 (2013), 121- 129
  • [8] Pillay V., Dott C., Choonara Y.E., Tyagi C.,Tomar L., Kumar P., du Toit L.C., Ndesendo V.M.K., A Review of the Effect of Processing Variables on the Fabrication of Electrospun Nanofibers for Drug Delivery Applications, J. Nanomater., 1 (2013), 1-22
  • [9] Gee S., Johnson B., Smith A.L., Optimizing electrospinning parameters for piezoelectric PVDF nanofiber membranes, J. Membr. Sci., 563 (2018), 804-812
  • [10] Huang T., Wang C., Yua H., Wang H., Zhang Q., Zhua M., Human walking-driven wearable all-fiber triboelectric nanogenerator containing electrospun polyvinylidene fluoride piezoelectric nanofibers, Nano Energy, 14 (2015), 226-235
  • [11] Abolhasani M.M., Shirvanimoghaddam K., Naebe M., PVDF/graphene composite nanofibers with enhanced piezoelectric performance for development of robust nanogenerators, Compos. Sci. Technol., 138 (2017), 49-56
  • [12] Martins P., Caparros C., Gonçalves R., Martins P.M., Benelmekki M., Botelho G., Lanceros-Mendez S., Role of Nanoparticle Surface Charge on the Nucleation of the Electroactive β-Poly(vinylidene fluoride) Nanocomposites for Sensor and Actuator Applications, J. Phys. Chem. C, 116 (2012), 15790-15794
  • [13] Liao Y., Wanga R., Tian M., Qiu C., Fane A.G., Fabrication of polyvinylidene fluoride (PVDF) nanofiber membranes by electro-spinning for direct contact membrane distillation, J. Membr. Sci., 425-426 (2013), 30-39
  • [14] Marx S, Jose M.V, Andersen J.D, Russell A.J., Electrospun gold nanofibre electrodes for biosensors, Biosens. Bioelectron., 26 (2011), 2981-2986
  • [15] Li K., Hou D., Fu C., Wang K., Wang J., Fabrication of PVDF nanofibrous hydrophobic composite membranes reinforced with fabric substrates via electrospinning for membrane distillation desalination, J. Environ. Sci., 75 (2019), 277-288
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-004a6393-50ed-4ddd-a13a-b5f36c16fb18
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.