Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2023 | Vol. 71, no. 3 | 1321--1334
Tytuł artykułu

Performance of the Indian summer monsoon 2020 in NCEP‑GFS

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The rainfall observed 957.6 mm during summer monsoon season (June–September) of 2020 over India, which is 9% more than the climatological mean summer monsoon rainfall. In this study, the Indian Summer Monsoon (ISM) features are evaluated with National Center for Environment Prediction-Global Forecast System (NCEP-GFS). The 1200 UTC operational analysis and forecast fields (up to 5 days) with 0.5° horizontal resolution and 64 vertical levels are archived for the period of 1st May up to 30th September 2020. The ISM characteristics such as the low-level westerly jet at 850 hPa throughout the monsoon season, reaching the maximum intensity (> 18 m sec-1) on the Somalian coast and upper-level tropical easterly jet at 150 hPa (> 30 m sec-1) are well reflected in the NCEP analysis during summer monsoon season. The NCEP model reveals that the ISM features are reasonably well predicted in day 1 forecast, whereas in day 3 and day 5 forecasts it exhibited certain biased tendencies with respect to NCEP analysis. The spatial distribution of observed rainfall was in good agreement with the day 1, day 3, and day 5 forecasts; however, the intensity was overestimated over central India when compared to India Meteorological Department (IMD) observations. The heavy rainfall events (> 64.5 mm as per the criteria of IMD) were realistically captured in the day 1 forecast in terms of spatial distribution and intensity, but the model has limitations to capture intensity and distribution on day 3 and day 5 forecasts.
Wydawca

Czasopismo
Rocznik
Strony
1321--1334
Opis fizyczny
Bibliogr. 36 poz., rys.
Twórcy
  • Centre for Ocean Atmospheric Science and Technology, Amity University Rajasthan, Kant Kalwar, Jaipur, India, pvsraju@jpr.amity.edu
  • Centre for Ocean Atmospheric Science and Technology, Amity University Rajasthan, Kant Kalwar, Jaipur, India
  • Centre for Ocean Atmospheric Science and Technology, Amity University Rajasthan, Kant Kalwar, Jaipur, India
  • South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, China
Bibliografia
  • 1. Acharya N, Chattopadhyay S, Mohanty UC, Dash SK, Sahoo LN (2012) On the bias correction of general circulation model output for Indian summer monsoon. Meteorol Appl 20:349–356. https://doi.org/10.1002/met.1294
  • 2. Arpe K, Klinker E (1986) Systematic errors of the ECMWF operational forecasting model in mid-latitudes. Q J R Meteorol Soc 112:181–202. https://doi.org/10.1002/qj.49711146904
  • 3. Ashfaq M, Cavazos T, Reboita MS, Torres-Alavez JA, Im ES, Olusegun CF, Alves L, Key K, Adeniyi MO, Tall M, Sylla MB, Mehmood S, Zafar Q, Das S, Diallo I, Coppola E, Giorgi F (2021) Robust late twenty-first century shift in the regional monsoons in RegCM-CORDEX simulations. Clim Dyn 57:1463–1488. https://doi.org/10.1007/s00382-020-05306-2
  • 4. Cellitti MP, Walsh JE, Rauber RM, Portis DH (2006) Extreme cold air outbreaks over the United States, the polar vortex, and the large-scale circulation. J Geophys Res 111:D02114. https://doi.org/10.1029/2005JD006273
  • 5. DelSole T, Shukla J (2012) Climate models produce skillful predictions of Indian summer monsoon rainfall. Geophys Res Lett 39:L09703. https://doi.org/10.1029/2012GL051279
  • 6. Gadgil S, Rajeevan M, Nanjundiah R (2005) Monsoon prediction–Why yet another failure? Curr Sci 88:1389–1400
  • 7. Heckley WA (1985) Systematic errors of the ECMWF operational forecasting model in tropical region. Q J R Meteorol Soc 111:709–738. https://doi.org/10.1002/qj.49711146904
  • 8. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–472. https://doi.org/10.1175/1520-0477(1996)077%3c0437:TNYRP%3e2.0.CO;2
  • 9. Kanamitsu M (1989) Description of the NMC global data assimilation and forecast system. Weather Forecast 4(3):335–342. https://doi.org/10.1175/1520-0434(1989)004%3c0335:DOTNGD%3e2.0.CO;2
  • 10. Kanamitsu M, Alpert J, Campana K, Caplan P, Deaven D, Iredell M, Katz B, Pan H, Sela J, White G (1991) Recent changes implemented into the global forecast system at NMC. Weather Forecast 6(3):425–435. https://doi.org/10.1175/1520-0434(1991)006%3C0425:RCIITG%3E2.0.CO;2
  • 11. Karadan MM, Raju PVS, Mishra A (2021) Simulations of Indian summer monsoon using RegCM: a comparison with ERA and GFDL analysis. Theor Appl Climatol 143:1381–1391. https://doi.org/10.1007/s00704-020-03496-7
  • 12. Krishnan R, Singh B, Vellore R, Mujumdar M, Swapna P, Choudhury A, Rajeevan M (2020) A short perspective on the Mascarene High and the abnormal Indian Monsoon during 2015. Izv Atmos Ocean Phys 4:17–19. https://doi.org/10.48550/arXiv.2011.11372
  • 13. Kug JS, Sooraj KP, Li T, Jin FF (2010) Precursors of the El Niño/La Niña onset and their inter relationship. J Geophys Re. https://doi.org/10.1029/2009JD012861
  • 14. Kumar P, Kishtawal CM, Pal PK (2017) Impact of ECMWF, NCEP, and NCMRWF global model analysis on the WRF model forecast over Indian Region. Theor Appl Climatol 127:143–151. https://doi.org/10.1007/s00704-015-1629-1
  • 15. Lin SJ (2004) A vertically lagrangian finite-volume dynamical core for global models. Mon Weather Rev 132(10):2293–2307. https://doi.org/10.1175/1520-0493(2004)32%3C2293:AVLFDC%3E2.0.CO;2
  • 16. Mausam E (2021) Weather in India: MONSOON SEASON (June to September 2020). Mausam 72(3):685–718. https://doi.org/10.54302/mausam.v72i3.2979
  • 17. Mitra A, Bohra A, Rajeevan M, Krishnamurti T (2009) Daily Indian precipitation analysis formed from a merge of rain-gauge data with the TRMM TMPA satellite-derived rainfall estimates. J Meteorol Soc Jpn 87A:265–279. https://doi.org/10.2151/jmsj.87A.265
  • 18. Mohanty UC, Rao PLS, Raju PVS, Bhatla R (2003) A Study of Diagnostic Aspects of South Asian Summer Monsoon. Proc Indian National Sci Acad Part A 69:505–522
  • 19. Mohanty UC, Raju PVS, Bhatla R (2005) A study on climatological features of the Asian summer monsoon: dynamics, energetics and variability. Pure Appl Geophys 162:1511–1541. https://doi.org/10.1007/s00024-005-2681-z
  • 20. Pattanaik DR, Kumar A (2010) Prediction of summer monsoon rainfall over India using the NCEP climate forecast system. Clim Dyn 34:557–572. https://doi.org/10.1007/s00382-009-0648-y
  • 21. Pattanaik DR, Sahai AK, Muralikrishna RP, Mandal R, Dey A (2020) Active-break transitions of monsoons over India as predicted by coupled model ensembles. Pure Appl Geophys 177:4391–4422. https://doi.org/10.1007/s00024-020-02503-2
  • 22. Patwardhan S, Kulkarni A, Kumar K (2014) Impact of climate change on the characteristics of indian summer monsoon onset. Int J Atmos Sci 201695:11. https://doi.org/10.1155/2014/201695
  • 23. Pokhrel S, Saha SK, Dhakate A, Rahman H, Chaudhari HS, Salunke K, Hazra A, Sujith K, Sikka DR (2016) Seasonal prediction of Indian summer monsoon rainfall in NCEP CFSv2: forecast and predictability error. Clim Dyn 46:2305–2326. https://doi.org/10.1007/s00382-015-2703-1
  • 24. Putman WM, Lin SJ (2007) Finite-volume transport on various cubed-sphere grids. J Comput Phys 227(1):55–78. https://doi.org/10.1016/j.jcp.2007.07.022
  • 25. Raghavan K (1973) Tibetan anticyclone and tropical easterly jet. Pure Appl Geophys 110:2130–2142. https://doi.org/10.1007/BF00876576
  • 26. Raju PVS, Mohanty UC, Bhatla R (2005) Onset characteristics of the southwest monsoon over India. Int J Climatol 25:167–182. https://doi.org/10.1002/joc.1121
  • 27. Raju PVS, Mohanty UC, Hsu HH (2010) A study on drought features of the Indian summer monsoon 2002. Meteorol Atmosph Phys 108:43–55. https://doi.org/10.1007/s00703-010-0082-z
  • 28. Raju PVS, Mishra A, Sundari ABT (2020) Indian summer monsoon features in the NCEP analysis and forecast system. J Earth Syst Sci 129:1–10. https://doi.org/10.1007/s12040-020-01487-w
  • 29. Raju PVS, Karadan MM, Prasad DH (2022) The role of land Surface schemes in non-hydrostatic RegCM on the simulation of Indian summer monsoon. Int J Climatol. https://doi.org/10.1002/joc.7735
  • 30. Rao PLS, Mohanty UC, Raju PVS, Iyengar G (2003) The Indian summer monsoon as revealed by the NCMRWF system. J Earth Syst Sci 112:95–111. https://doi.org/10.1007/BF02710046
  • 31. Saha SK, Pokhrel S, Chaudhari HS, Dhakate A, Shewale S, Sabeerali CT, Salunke K, Hazra A, Mahapatra S, Rao AS (2014) Improved simulation of Indian summer monsoon in latest NCEP climate forecast system free run. Int J Climatol 34:1628–1641. https://doi.org/10.1002/joc.3791
  • 32. Tomczyk AM, Sulikowska A, Bednorz E, Półrolniczak M (2019) Atmospheric circulation conditions during winter warm spells in Central Europe. Nat Haz 96(3):1413–1428. https://doi.org/10.1007/s11069-019-03621-4
  • 33. Wang B, Ding Q, Fu X, Kang IS, Jin K, Shukla J, Doblas-Reyes F (2005) Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophys Res Lett 32:L15711. https://doi.org/10.1029/2005GL022734
  • 34. Wang B, Ding Q, Joseph PV (2009) Objective definition of the Indian summer monsoon onset. J Clim 22:3303–3316. https://doi.org/10.1175/2008JCLI2675.1
  • 35. Wang Z, Li G, Yang S (2018) Origin of Indian summer monsoon rainfall biases in CMIP5 multimodel ensemble. Clim Dyn 51:755–768. https://doi.org/10.1007/s00382-017-3953-x
  • 36. Webster PJ, Magana VO, Palmer TN, Shukla J, Tomas RA, Yanai MU, Yasunari T (1998) Monsoons: processes, predictability, and the prospects for prediction. J Geophys Res Oceans 103:14451–14510. https://doi.org/10.1038/43848
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-0046e9b7-302f-4432-aa39-2ac812ac431e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.