Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | T. 188 | 9--24
Tytuł artykułu

Wybrane parametry fizyczne minerałów i skał w funkcji ciśnienia i temperatury oraz ich przydatność do interpretacji danych geofizycznych

Warianty tytułu
EN
Selected physical parameters of minerals and rocks versus pressure and temperature, their usefulness in interpretation of geophysical data
Języki publikacji
PL
Abstrakty
PL
Petrologiczno-geologiczna interpretacja profili sejsmicznych litosfery jest możliwa dzięki stosowaniu wyników pomiarów laboratoryjnych parametrów fizycznych minerałów i skał. Podstawowymi parametrami fizycznymi czułymi na zmiany składu chemicznego są prędkości propagacji fal sejsmicznych (Vp i Vs) oraz gęstość (r). W badaniach litosfery powinien być także uwzględniany parametr k = Vp/Vs i anizotropia sejsmiczna. Celem pracy było zgromadzenie wybranych parametrów fizycznych głównych minerałów i skał litosfery z całego świata oraz próba prześledzenia zmienności tych parametrów w funkcji ciśnienia i temperatury. Parametry fizyczne zestawiono w pięciu tabelach, z których cztery poświęcono skałom, a jedną anizotropii Vp w monokryształach minerałów. Modele petrologiczne litosfery powinny charakteryzować się zgodnością wydzieleń litologicznych z profilami sejsmicznymi, a także wykazywać zgodność z geologią, tektoniką i dostępnym inwentarzem skalnym obszaru modelowania. W petrologicznym modelowaniu litosfery powinna być uwzględniana natura nieciągłości geofizycznych (nieciągłości składu chemicznego, transformacje fazowe bądź zmiany stanu skupienia). Natura nieciągłości Moho pozostaje ciągle przedmiotem dyskusji i na znacznych obszarach ma, najprawdopodobniej, charakter transformacji typu gabro→eklogit.
EN
Application of the results of small scale laboratory determinations of physical parameters of minerals and rocks made possible to perform a petrological and geological interpretation of seismic profiles of lithosphere. Seismic velocities (Vp and Vs) as well as density (p) are the main physical parameters that are sensitive to changes of chemical composition of minerals and rocks. In lithospheric studies the k = Vp/Vs parameter should be also considered as well as seismic anisotropy. The aim of the paper was to compile selected physical parameters of major minerals and lithospheric rocks from all over the world, as well as to present their changes as function of pressure and temperature. Physical parameters are collected in five tables, four of which are devoted to rocks and the fifth one - to the Vp anisotropy of single crystals of major minerals. For these minerals, there are also given mean values of densities as well as P- and S-wave velocities. In petrological modelling of Earth's crust and mantle, the concordance with tectonics, geology and rocks available in the area, as well as the nature of seismic discontinuities should be considered. The idea that Moho discontinuity has the nature of gabbro → eclogite transformation is postulated. Moreover, the position of phase separation boundaries strongly depends upon chemical composition of the rocks.
Wydawca

Rocznik
Tom
Strony
9--24
Opis fizyczny
Biblogr. 72 poz.
Twórcy
  • Instytut Nauk Geologicznych Polskiej Akademii Nauk, ul. Twarda 51/55, 00-818 Warszawa, nbakun@twarda.pan.pl
Bibliografia
  • 1. Aleksandrov, K. S., Ryzhova, T. V., & Belikov, B. P. (1964). The elastic properties of pyroxenes. Sov.Phys.Crystallogr., 8(5), 589-591.
  • 2. Alexandrov, K. S., & Ryzhova, T. V. (1961). Elastic properties of rock-forming minerals. II. layered silicates. Bull.Acad.Sci.USSR, Geophys.Ser., 9, 1165-1168.
  • 3. Alexandrov, K. S., & Ryzhova, T. V. (1961). Elastic properties of rock-forming minerals. II. layered silicates. Bull.Acad.Sci.USSR, Geophys.Ser., 9, 1165-1168.
  • 4. Anderson, D. L. (1977). Composition of the mantle and core. Annual Review of Earth and Planetary Sciences, 5, 179-202.
  • 5. Bajuk, E. I., Volarovich, M. P., Klíma, K., Pros, Z., & Vaněk, J. (1967). Velocity of longitudinal waves in eclogite and ultrabasic rocks under pressures to 4 kilobars. Studia Geophysica Et Geodaetica, 11(3), 271-280. doi:10.1007/BF02585458
  • 6. Bakun-Czubarow, N. (1982). The influence of transition metals on minerals phase transformations within the earth's mantle. Acta Geophysica Polonica, 30(4), 371-380.
  • 7. Bakun-Czubarow, N., & Leliwa-Kopystynski, J. (1984). Hypothetical phase transformations in the earth's mantle. Constitution of the Earth's Interior, 289-325.
  • 8. Birch, F. (1961). The velocity of compressional waves in rocks to 10 kilobars. J.Geophys.Res., 66(PART 2), 2199-2224.
  • 9. Brückl, E., Bodoky, T., Hegedüs, E., Hrubcová, P., Gosar, A., Grad, M., Yliniemi, J. (2003). ALP 2002 seismic experiment. Studia Geophysica Et Geodaetica, 47(3), 671-679. doi:10.1023/A:1024780022139
  • 10. Christensen, N., Salisbury, M., Fountain, D., & Carlson, R. (1974). Velocities of compressional and shear waves in DSDP leg 27 basalts. Initial Reports of the Deep Sea Drilling Project, 27, 445-449.
  • 11. Christensen, N. I. (1972). Compressional and shear wave velocities at pressures to 10 kilobars for basalts from the east pacific rise. Geophysical Journal of the Royal Astronomical Society, 28(5), 425-429. doi:10.1111/j.1365-246X.1972.tb06140.x
  • 12. Christensen, N. I. (1970). Compressional wave velocities in basalts from the juan de fuca ridge. J.Geophys.Res., 75, 2773-2775.
  • 13. Christensen, N. I. (1968). Compressional wave velocities in basic rocks. Pac.Sci., 22, 41-44.
  • 14. Christensen, N. I. (1965). Compressional wave velocities in metamorphic rocks at pressures to 10 kilobars. J.Geophys.Res., 70(24), 6147-6164.
  • 15. Christensen, N. I. (1974). Compressional wave velocities in possible mantle rocks to pressures of 30 kilobars. J.Geophys.Res., 79(2), 407-412.
  • 16. Christensen, N. I. (1966). Elasticity of ultrabasic rocks. J.Geophys.Res., 71(24), 5921-5931.
  • 17. Christensen, N. I. (1971). Fabric, seismic anisotropy, and tectonic history of the twin sisters dunite, Washington. Bulletin of the Geological Society of America, 82(6), 1681-1694. doi:10.1130/0016-7606(1971)82[1681:FSAATH]2.0.CO;2
  • 18. Christensen, N. I. (1978). Ophiolites, seismic velocities and oceanic crustal structure. Tectonophysics, 47(1-2), 131-157. doi:10.1016/0040-1951(78)90155-5
  • 19. Christensen, N. I. (1977). The geophysical significance of oceanic plagiogranite. Earth and Planetary Science Letters, 36(2), 297-300. doi:10.1016/0012-821X(77)90212-6
  • 20. Christensen, N. I., & Fountain, D. M. (1975). Constitution of the lower continental crust based on experimental studies of seismic velocities in granulite. Bulletin of the Geological Society of America, 86(2), 227-236. doi:10.1130/0016-7606(1975)86<227:COTLCC>2.0.CO;2
  • 21. Christensen, N. I., Fountain, D. M., Carlson, R. H., & Salisbury, M. H. (1974). Velocities and elastic modul of volcanic and sedimentary rocks recovered on DSDP leg 25. Initial Reports of the Deep Sea Drilling Project, 25, 357-360.
  • 22. Christensen, N. I., & Mooney, W. D. (1995). Seismic velocity structure and composition of the continental crust: A global view. Journal of Geophysical Research, 100(B6), 9761-9788. doi:10.1029/95JB00259
  • 23. Christensen, N. I., & Salisbury, M. H. (1972). Sea floor spreading, progressive alteration of layer 2 basalts, and associated changes in seismic velocities. Earth and Planetary Science Letters, 15(4), 367-375. doi:10.1016/0012-821X(72)90037-4
  • 24. Christensen, N. I., & Salisbury, M. H. (1973). Velocities, elastic moduli and weathering-age relations for pacific layer 2 basalts. Earth and Planetary Science Letters, 19(4), 461-470. doi:10.1016/0012-821X(73)90190-8
  • 25. Christensen, N. I., & Shaw, G. H. (1970). Elasticity of mafic rocks from the Mid‐Atlantic ridge. Geophysical Journal of the Royal Astronomical Society, 20(3), 271-284. doi:10.1111/j.1365-246X.1970.tb06070.x
  • 26. Dandekar, D. P. (1968). Pressure dependence of the elastic constants of calcite. Physical Review, 172(3), 873-877. doi:10.1103/PhysRev.172.873
  • 27. Fountain, D. M. (1976). The ivrea-verbano and strona-ceneri zones, northern Italy: A cross-section of the continental crust-new evidence from seismic velocities of rock samples. Tectonophysics, 33(1-2), 145-165. doi:10.1016/0040-1951(76)90054-8
  • 28. Fox, P., Schreiber, E., & Peterson, J. (1973). The geology of the oceanic crust: Compressional wave velocities of oceanic rocks. Journal of Geophysical Research, 78(23), 5155-5172.
  • 29. Fox, P. J., & Schreiber, E. (1973). Compressional wave velocities in basalt and dolerite samples recovered during leg 15. Initial Reports of the Deep Sea Drilling Project, 15.
  • 30. Fox, P. J., Schreiber, E., & Peterson, J. J. (1972). Compressional wave velocities in basalt and altered basalt recovered during leg 14. Initial Reports of the Deep Sea Drilling Project, 14, 773-775.
  • 31. Grabowska, T. (1993). Modelowanie grawimetryczne głębokiej struktury skorupy ziemskiej i górnego płaszcza w obszarze Polski. raport merytorycny 1992-1993.
  • 32. Graham, E. K., & Barsch, G. R. (1969). Elastic constants of single-crystal forsterite as a function of temperature and pressure. J.Geophys.Res., 74, 5949-5960.
  • 33. Green, D. H., & Ringwood, A. E. (1967). An experimental investigation of the gabbro to eclogite transformation and its petrological applications. Geochimica Et Cosmochimica Acta, 31(5), 767-833. doi:10.1016/S0016-7037(67)80031-0
  • 34. Guterch, A., & Grad, M. (2000). New generation of deep lithospheric studies; Polanaise'97 and celebration 2000 seismic experiments in central Europe. [Nowa generacja programów badań głȩbokich struktur litosfery; eksperymenty sejsmiczne Polonaise'97 i celebration 2000 w Europie Środkowej] Przegląd Geologiczny, 48(12), 1085-1095.
  • 35. Guterch, A., Grad, M., & Keller, G. R. (2001). Seismologists celebrate the new millennium with an experiment in central Europe. Eos, 82(45), 529-535. doi:10.1029/01EO00313
  • 36. Guterch, A., Grad, M., Thybo, H., Keller, G. R., Czuba, W., Gaczyński, E., Lund, C. -. (1999). POLONAISE '97 - an international seismic experiment between Precambrian and Variscan Europe in Poland. Tectonophysics, 314(1-3), 101-121. doi:10.1016/S0040-1951(99)00239-5
  • 37. Guterch, A., Grad, M., Thybo, H., Keller, G. R., & Miller, K. (1998). Seismic experiment spreads across Poland. Eos, 79(26) doi:10.1029/98eo00224
  • 38. Hughes, D. S., & Cross, J. H. (1951). Elastic wave velocities in rocks at high pressures and temperatures. Geophysics, 16(4), 577-593.
  • 39. Hughes, D. S., & Maurette, C. (1957). Variation of elastic wave velocities in basic igneous rocks with pressure and temperature. Geophysics, 22(1), 23-31.
  • 40. Hughes, D. S., & Maurette, C. (1956). Variation of elastic wave velocities in granites with pressure and temperature. Geophysics, 21(2), 277-284.
  • 41. Iida, K., Sugino, T., Furuhashi, H., & Kumazawa, M. (1967). Elastic wave velocity in crystalline schists from sanbagawa metamorphic terrane, shikoku, Japan. J.Earth Sci.Nagoya Univ., 15, 112-147.
  • 42. Ito, K., & Kennedy, G. C. (1971). An experimental study of the basalt-garnet granulite-eclogite transition. The Structure and Physical Properties of the Earth's Crust, 14, 303-314.
  • 43. Kanamori, H., & Mizutani, H. (1965). Ultrasonic measurements of elastic constants of rocks under high pressures. Bull.Earth quake Res.Inst.Univ.Tokyo, 43, 173-194.
  • 44. Kozlovskaya, E., Janik, T., Yliniemi, J., Karatayev, G., & Grad, M. (2004). Density-velocity relationship in the upper lithosphere obtained from P- and S-wave velocity models along the EUROBRIDGE'97 seismic profile and gravity data. Acta Geophysica Polonica, 52(4), 397-424.
  • 45. Kroenke, L., Manghnani, M., Rai, C., Fryer, P., & Ramananantoandro, R. (1976). Elastic properties of selected ophiolitic rocks from Papua New Guinea: Nature and composition of oceanic lower crust and upper mantle. Tectonophysics, 19, 407-421.
  • 46. Kumazawa, M., & Anderson, O. L. (1969). Elastic moduli, pressure derivatives, and temperature derivatives of single-crystal olivine and single-crystal forsterite. J.Geophys.Res., 74, 5961-5972.
  • 47. Kumazawa, M., Helmstaedt, H., & Masaki, K. (1971). Elastic properties of eclogite xenoliths from diatremes of the East Colorado plateau and their implication to the upper mantle structure. Journal of Geophysical Research, 76(5), 1231-1247.
  • 48. Malinowski, M., Zelaźniewicz, A., Grad, M., Guterch, A., Janik, T., Czuba, W., Keller, G. R. (2005). Seismic and geological structure of the crust in the transition from Baltica to Palaeozoic Europe in SE Poland - CELEBRATION 2000 experiment, profile CEL02. Tectonophysics, 401(1-2), 55-77. doi:10.1016/j.tecto.2005.03.011
  • 49. Manghnani MH. (1969). Elastic Constants of Single-Crystal Rutile Under Pressures To 7.5 Kolobars. J Geophys Res, 74(17), 4317-4328.
  • 50. Manghnani, M., Ramananantoandro, R., & Clark, S., Jr. (1974). Compressional and shear wave velocities in granulite facies rocks and eclogites to 10 kbar. J.Geophys.Res., 79(35), 5427-5446.
  • 51. Manghnani, M. H., & Woollard, G. P. (1968). Elastic wave velocities in Hawaiian rocks at pressures to ten kilobars. The Crust and Upper Mantle of the Pacific Area, 12, 501-516.
  • 52. McSkimin, H. J., Andreatch Jr., P., & Thurston, R. N. (1965). Elastic moduli of quartz versus hydrostatic pressure at 25°and - 195.8°C. Journal of Applied Physics, 36(5), 1624-1632. doi:10.1063/1.1703099
  • 53. Mizutani, H., & Osako, M. (1974). Elastic-wave velocities and thermal diffusivities of apollo 17 rocks and their geophysical implications. Proc.Lunar Sci.Conf.5th, 2891-2901.
  • 54. Musacchio, G., Mooney, W. D., Luetgert, J. H., & Christensen, N. I. (1997). Composition of the crust in the Grenville and Appalachian provinces of North America inferred from VP/VS ratios. Journal of Geophysical Research B: Solid Earth, 102(B7), 15225-15241.
  • 55. Perchuc, E. (1991). VP/VS ratio as an indicator of crustal layers and petrological implications: An example of SVEKA profile. Acta Geophysica Polonica, 39(2), 179-214.
  • 56. Růžek, B., Vavryčuk, V., Hrubcová, P., Zedník, J., Guterch, A., Grad, M., Selvi, O. (2003). Crustal anisotropy in the bohemian massif, Czech Republic: Observations based on Central European lithospheric experiment based on refraction (CELEBRATION) 2000. Journal of Geophysical Research: Solid Earth, 108(8), ESE 9-1- ESE 9-15.
  • 57. Ryzhova, T. V. (1964). Elastic properties of plagioclase. Bull.Acad.Sci.USSR Geophys., 7, 633-635.
  • 58. Ryzhova, T. V., & Alexandrov, K. S. (1965). The elastic properties of potassium-sodium feldspars. Isvest Akad Nauk USSR. Phys.Solid Earth, 1, 53-56.
  • 59. Ryzhova, T. V., Reshchikova, L. M., & Aleksandrov, K. S. (1966). Elastic properties of rock-forming minerals. 6. garnets. VI. Garnets, 7, 447-450.
  • 60. Schock, R. M., Bonner, B. P., & Louis, H. (1974). Collection of ultrasonic velocity data as a function of pressure for polycrystalline solids. Collection of Ultrasonic Velocity Data as a Function of Pressure for Polycrystalline Solids.
  • 61. Schreiber, E. (1967). Elastic moduli of single-crystal spinel at 25°c and to 2 kbar. Journal of Applied Physics, 38(6), 2508-2511. doi:10.1063/1.1709937
  • 62. Schreiber, E., & Fox, P. J. (1977). Density and P-wave velocity of rocks from the FAMOUS region and their implication to the structure of the oceanic crust. Bulletin of the Geological Society of America, 88(4), 600-608. doi:10.1130/0016-7606(1977)88<600:DAPVOR>2.0.CO;2
  • 63. Silver, P. G., Mainprice, D., Ben Ismail, W., Tommasi, A., & Barruol, G. (1999). Mantle structural geology from seismic anisotropy. Mantle Petrology: Field Observations and High Pressure Experimentation: A Tribute to Francis R.(Joe) Boyd, 6, 79-103.
  • 64. Simmons, G. (1964). Velocity of compressional waves in various minerals at pressures to 10 kilobars. Journal of Geophysical Research, 69(6), 1117-1121.
  • 65. Simmons, G., & Brace, W. F. (1965). Comparison of static and dynamic measurements of compressibility of rocks. J.Geophys.Res., 70(22), 5649-5656.
  • 66. Sobolev, S. V., & Babeyko, A. Y. (1994). Modeling of mineralogical composition, density and elastic wave velocities in anhydrous magmatic rocks. Surveys in Geophysics, 15(5), 515-544. doi:10.1007/BF00690173
  • 67. Środa, P. (2005). Seismic anizotopy of the Upper Crust neat East European craton margin in SE Poland? Geoph.Res., 7, 02298.
  • 68. Verma, R. K. (1960). Elasticity of some high-density crystals. J.Geophys.Res., 65(2), 757-766.
  • 69. Waldhauser, F. (1996). A parametrized three-dimentional Alpine crustal model and its application to teleseismic wave front scattering. A Parametrized Three-Dimensional Alpine Crustal Model and its Application to Teleseismic Wavefront Scattering.
  • 70. Wang, C. (1966). Velocity of compressional waves in limestones, marbles, and a single crystal of calcite to 20 kilobars. J.Geophys.Res., 71, 3543-3547.
  • 71. Wang, H., & Simmons, G. (1972). Elasticity of some mantle crystal structures 1. pleonaste and hercynite spinel. J.Geophys.Res., 77, 4379-4392.
  • 72. Weidner, D. J. (1986). Mantle model based on measured physical properties of minerals. Chemistry and Physics of Terrestrial Planets, 251-274. doi:10.1007/978-1-4612-4928
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-00235dd8-4ae5-458c-970e-425cfc342516
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.