Czasopismo
2018
|
Vol. 38, Fasc. 1
|
191--207
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Let {X(t) : t = (t1, t2,…, td) ϵ [0, ∞)d} be a centered stationary Gaussian field with almost surely continuous sample paths, unit variance and correlation function r satisfying r(t) < 1 for every t ≠ 0 and r(t) = 1 – Σdi=1 |ti|αi + o (Σdi=1 |ti|αi), as t → 0, with some α1, α2,…, αd ϵ (0, 2]. The main result of this contribution is the description of the asymptotic behaviour of P (sup{X(t) : t ϵ Jxm} ≤ u), as u → ∞, for some Jordan-measurable sets Jxm of volume proportional to P (sup{X(t) : t ϵ [0, 1]d} > u)−1 (1 + o(1)).
Czasopismo
Rocznik
Tom
Strony
191--207
Opis fizyczny
Bibliogr. 7 poz.
Twórcy
autor
- Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, ul. Chopina 12/18, 87-100 Toruń, Poland, natas@mat.umk.pl
Bibliografia
- [1] M. Arendarczyk and K. Dębicki, Exact asymptotics of supremum of a stationary Gaussian process over a random interval, Statist. Probab. Lett. 82 (2012), pp. 645-652.
- [2] K. Dębicki, E. Hashorva, and N. Soja-Kukieła, Extremes of stationary Gaussian random fields, preprint, available at http://arxiv.org/abs/1312.2863, 2013.
- [3] K. Dębicki, E. Hashorva, and N. Soja-Kukieła, Extremes of stationary Gaussian random fields, J. Appl. Probab. 52 (2015), pp. 55-67.
- [4] M. R. Leadbetter, G. Lindgren, and H. Rootzén, Extremes and Related Properties of Random Sequences and Processes, Springer Ser. Statist., Springer, New York 1983.
- [5] J. III Pickands, Asymptotic properties of maximum in a stationary Gaussian process, Trans. Amer. Math. Soc. 145 (1969), pp. 75-86.
- [6] V. I. Piterbarg, Asymptotic Methods in the Theory of Gaussian Processes and Fields, Transl. Math. Monogr., Vol. 148, American Mathematical Society, Providence 1996.
- [7] Z. Tan and E. Hashorva, Exact tail asymptotics of the supremum of a strongly dependent Gaussian process over a random interval, Lith. Math. J. 53 (2013), pp. 91-102.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-0015f0f8-efc1-448c-a63a-635413797bab