Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2022 | Vol. 70, no 5 | 2311--2324
Tytuł artykułu

Preliminary evidence on laboratory experiments to detect the impact of transient flow on bedload transport

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Trapezoidal-shaped hydrographs are typical of anthropized rivers, as this form is generally associated with the release of water from hydropower dams. To investigate how such unnatural waves can affect bedload rate, preliminary fume experiments were performed in Krakow, Poland, looking at bedload transport rate, bed shear stress and bed morphology. In addition, close-range bed surface photogrammetry was used to investigate bed changes due to the passage of the food wave. Three scenarios, having the same water volume but different wave magnitudes, were tested. The lowest wave showed almost no sediment transport and no visible changes in bed morphology, while higher waves changed the bed morphology, creating erosion and accumulation zones. The highest wave was characterized by an 8-shaped hysteresis of the bedload rate with a peak during the wave maximum. The lag time between the maximum bedload rate and the wave plateau was longer than expected due to zero-slope conditions.
Wydawca

Czasopismo
Rocznik
Strony
2311--2324
Opis fizyczny
Bibliogr. 50 poz.
Twórcy
  • Department of Hydrology and Hydrodynamics, Institute of Geophysics Polish Academy of Sciences, Warsaw, Poland, lprzyborowski@igf.edu.pl
  • Department of Hydrology and Hydrodynamics, Institute of Geophysics Polish Academy of Sciences, Warsaw, Poland, mnones@igf.edu.pl
  • Department of Hydrology and Hydrodynamics, Institute of Geophysics Polish Academy of Sciences, Warsaw, Poland, m.mrokowska@igf.edu.pl
  • Faculty of Environmental Engineering and Land Surveying, University of Agriculture in Kraków, Kraków, Poland, leszek.ksiazek@urk.edu.pl
  • Faculty of Environmental Engineering and Land Surveying, University of Agriculture in Kraków, Kraków, Poland, phancongngoc1402@gmail.com
  • Institute of Chemistry, Biology and Environment, Vinh University, Vinh, Vietnam
  • Faculty of Environmental Engineering and Land Surveying, University of Agriculture in Kraków, Kraków, Poland, rmstruzy@cyf-kr.edu.pl
  • Faculty of Environmental Engineering and Land Surveying, University of Agriculture in Kraków, Kraków, Poland, m.wyrebek@gmail.com
  • Faculty of Environmental Engineering and Land Surveying, University of Agriculture in Kraków, Kraków, Poland, bartosz.mitka@urk.edu.pl
  • Faculty of Environmental Engineering and Land Surveying, University of Agriculture in Kraków, Kraków, Poland, szymon.wojak@wp.pl
Bibliografia
  • 1. Abderrezzak KEK, Paquier A, Gay B (2008) One-dimensional numerical modelling of dam-break waves over movable beds: application to experimental and field cases. Environ Fluid Mech 8:169–198. https://doi.org/10.1007/s10652-008-9056-9
  • 2. Aigner J, Kreisler A, Rindler R, Hauer C, Habersack H (2017) Bedload pulses in a hydropower affected alpine gravel bed river. Geomorphology 291:116–127. https://doi.org/10.1016/j.geomorph.2016.05.015
  • 3. Bartnik W, Banasik K, Książek L, Radecki-Pawlik A, Strużynski A (2005) Forecasting of fluvial processes on the Skawa River within back-water reach of the Świnna Poręba water reservoir. Publ Inst Geophy Pol Acad Sci 5(387):57–85
  • 4. Berta AM, Bianco G (2010) An expression for the water-sediment moving layer in unsteady flows valid for open channels and embankments. Nat Hazards Earth Syst 10(5):1051–1059. https://doi.org/10.5194/nhess-10-1051-2010
  • 5. Bombar G, Elci S, Tayfur G, Guney S, Bor A (2011) Experimental and numerical investigation of bed-load transport under unsteady flows. J Hydraul Eng 137(10):1276–1282. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000412
  • 6. Bracken LJ, Turnbull L, Wainwright J, Bogaart P (2015) Sediment connectivity: a framework for understanding sediment transfer at multiple scales. Earth Surf Proc Land 40(2):177–188. https://doi.org/10.1002/esp.3635
  • 7. Cronk S, Fraser CS, Hanley HB (2006) Automatic calibration of colour digital cameras. Photogramm Rec 21(116):355–372. https://doi.org/10.1111/j.1477-9730.2006.00380.x
  • 8. Faezal N, Mohd F, Nurul L, Radzuan S, Zulkiflee I, Mushairry M, Muhammad A (2016) Monitoring laboratory scale river channel profile changes using digital close range photogrammetry technique. Malays J Civ Eng 28(3):252–266. https://doi.org/10.11113/mjce.v28.16012
  • 9. Goring DG, Nikora VI (2002) Despiking acoustic Doppler velocimeter data. J Hydraul Eng 128(1):117–126. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:1(117)
  • 10. Graf WH, Suszka L (1985) Unsteady flow and its effect on sediment transport. In: Proceedings of the 21st IAHR congress, pp 1–5
  • 11. Guney MS, Bombar G, Aksoy AO (2013) Experimental study of the coarse surface development effect on the bimodal bed-load transport under unsteady flow conditions. J Hydraul Eng 139(1):12–21. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000640
  • 12. Hitchcock JN (2020) Storm events as key moments of microplastic contamination in aquatic ecosystems. Sci Total Environ 734:139436. https://doi.org/10.1016/j.scitotenv.2020.139436
  • 13. Humphries R, Venditti JG, Sklar LS, Wooster JK (2012) Experimental evidence for the effect of hydrographs on sediment pulse dynamics in gravel-bedded rivers. Water Resour Res 48:W01533. https://doi.org/10.1029/2011WR010419
  • 14. Jin ZW, Lu JY, Wu HL (2016) Study of bedload transport in backwater flow. J Hydrodyn 28(1):153–161. https://doi.org/10.1016/S1001-6058(16)60616-9
  • 15. Książek L, Woś A, Florek J, Wyrębek M, Młyński D, Wałęga A (2019) Combined use of the hydraulic and hydrological methods to calculate the environmental flow: Wisłoka river, Poland: case study. Environ Monit Assess 191(254):1–17. https://doi.org/10.1007/s10661-019-7402-7
  • 16. Książek L, Mitka B, Mrokowska M, Nones M, Phan CN, Przyborowski Ł, Strużyński A, Wojak S, Wyrębek M (2021) Application of digital close-range photogrammetry to determine changes in gravel bed surface due to transient flow conditions. Publ Inst Geophys Pol Acad Sci 434((E-11)):95–96. https://doi.org/10.25171/InstGeoph_PAS_Publs-2021-028
  • 17. Książek L, Woś A, Wyrębek M, Strużyński A (2020) Habitat structure changes of the Wisłoka River as a result of channel restoration. In: Kalinowska M, Mrokowska M, Rowiński P (eds) Recent trends in environmental hydraulics. GeoPlanet: Earth and planetary sciences. Springer Nature, Basel, pp 103–115. https://doi.org/10.1007/978-3-030-37105-0_9
  • 18. Lee H, Balachandar S (2012) Critical shear stress for incipient motion of a particle on a rough bed. J Geophys Res Earth 117:1026. https://doi.org/10.1029/2011JF002208
  • 19. Li ZJ, Qian HL, Cao ZX, Liu HH, Pender G, Hu PH (2018) Enhanced bed load sediment transport by unsteady flows in a degrading channel. Int J Sediment Res 33:327–339. https://doi.org/10.1016/j.ijsrc.2018.03.002
  • 20. Luhmann T, Fraser C, Maas HG (2016) Sensor modelling and camera calibration for close-range photogrammetry. ISPRS J Photogramm 115:37–46. https://doi.org/10.1016/j.isprsjprs.2015.10.006
  • 21. Luhmann T, Robson R, Kyle S, Boehm J (2019) Close-range photogrammetry and 3D imaging, 3rd edn. De Gruyter, Berlin. https://doi.org/10.1515/9783110607253
  • 22. Luo X, Yang S, Zhang J (2012) The impact of the Three gorges dam on the downstream distribution and texture of sediments along the middle and lower Yangtze river (Changjiang) and its estuary, and subsequent sediment dispersal in the east China sea. Geomorphology 179:126–140. https://doi.org/10.1016/j.geomorph.2012.05.034
  • 23. Manes C, Pokrajac D, McEwan I (2007) Double-averaged open-channel flows with small relative submergence. J Hydraul Eng 133(8):896–904. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:8(896)
  • 24. Mao L (2012) The effect of hydrographs on bed load transport and bed sediment spatial arrangement. J Geophys Res 117:F03024. https://doi.org/10.1029/2012JF002428
  • 25. Maselli V, Normandeau A, Nones M, Tesi T, Langone L, Trincardi F, Bohacs KM (2020) Tidal modulation of river-flood deposits: How low can you go? Geology 48(7):663–667. https://doi.org/10.1130/G47451.1
  • 26. McLaren P, Bowles D (1985) The effects of sediment transport on grain-size distributions. J Sediment Res 55(4):457–470
  • 27. Michalik A, Książek L (2009) Dynamics of water flow on degraded sectors of polish mountain stream channels. Pol J Environ Stud 18(4):665–672
  • 28. Mikrut S (2009) Przydatność algorytmów podpikselowej detekcji cech w wybranych zagadnieniach fotogrametrycznych. Archiwum Fotogrametrii, Kartografii i Teledetekcji 19:299–308 (in Polish)
  • 29. Mitka B, Pluta M (2016) Comparative analysis of the process of creating a 3D model of architecture object with using laser scanning and structure from motion technologies. In: 16th international multidisciplinary scientific GeoConference. SGEM 2. Curran Associates, Inc, pp 847–854
  • 30. Mrokowska MM, Rowiński PM (2019) Impact of unsteady flow events on bedload transport: a review of laboratory experiments. Water 11(5):907. https://doi.org/10.3390/w11050907
  • 31. Mrokowska MM, Rowiński PM, Książek L, Strużyński A, Wyrębek M, Radecki-Pawlik A (2018) Laboratory studies on bedload transport under unsteady flow conditions. J Hydrol Hydromech 66(1):23–31. https://doi.org/10.1515/johh-2017-0032
  • 32. Mrokowska MM, Rowiński PM, Książek L, Strużyński A, Wyrębek M, Radecki-Pawlik A (2016) Flume experiments on gravel bed load transport in unsteady flow—preliminary results. In: Rowiński P, Marion A (eds) Hydrodynamic and mass transport at freshwater aquatic interfaces. Geoplanet Earth and planetary sciences. Springer, Berlin, pp 221–233. https://doi.org/10.1007/978-319-27750-9_18
  • 33. Nones M, Varrani A, Franzoia M, Di Silvio G (2019) Assessing quasi-equilibrium fining and concavity of present rivers: a modelling approach. CATENA 181:104073. https://doi.org/10.1016/j.catena.2019.104073
  • 34. Parsheh M, Sotiropoulos F, Porte-Agel F (2010) Estimation of power spectra of acoustic-Doppler velocimetry data contaminated with intermittent spikes. J Hydraul Eng 136(6):368–378. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000202
  • 35. Phillips CB, Hill KM, Paola C, Singer MB, Jerolmack DJ (2018) Effect of flood hydrograph duration, magnitude, and shape on bed load transport dynamics. Geophys Res Let 45(16):8264–8271. https://doi.org/10.1029/2018GL078976
  • 36. Plumb BD, Juez C, Annable WK, McKie CW, Franca MJ (2020) The impact of hydrograph variability and frequency on sediment transport dynamics in a gravel-bed flume. Earth Surf Proc Land 45:816–830. https://doi.org/10.1002/esp.4770
  • 37. Przyborowski Ł, Nones M, Mrokowska M, Książek L, Phan CN, Strużyński A, Wyrebek M (2021) Laboratory Investigation of sediment transport under transient flow—preliminary results. Publ Inst Geophys Pol Acad Sci 434((E-11)):75–76. https://doi.org/10.25171/InstGeoph_PAS_Publs-2021-023
  • 38. Redolfi M, Bertoldi W, Tubino M, Welber M (2018) Bed load variability and morphology of gravel bed rivers subject to unsteady flow: a laboratory investigation. Water Resour Res 54:842–862. https://doi.org/10.1002/2017WR021143
  • 39. Savitzky A, Golay MJ (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36(8):1627–1639
  • 40. Stojic M, Chandler J, Ashrnore P, Luce J (1998) The assessment of sediment transport rates by automated digital photogrammetry. Photogramm Eng Rem S 64(5):387–395
  • 41. Török GT, Józsa J, Baranya S (2019) A shear Reynolds number-based classification method of the nonuniform bed load transport. Water 11(1):73. https://doi.org/10.3390/w11010073
  • 42. Wahl TL (2003) Discussion of ‘despiking acoustic Doppler velocimeter data’ by Derek G. Goring and vladimir I. Nikora J Hydraul Eng 129:484–487. https://doi.org/10.1061/(ASCE)0733-9429(2003)129:6(484)
  • 43. Wang L, Cuthbertson AJS, Pender G, Cao Z (2015) Experimental investigations of graded sediment transport under unsteady flow hydrographs. Int J Sediment Res 30:306–320. https://doi.org/10.1016/j.ijsrc.2015.03.010
  • 44. Wang L, Cuthbertson A, Pender G, Zhong DY (2019) Bed load sediment transport and morphological evolution in a degrading uniform sediment channel under unsteady flow hydrographs. Water Resour Res 55:431–5452. https://doi.org/10.1029/2018WR024413
  • 45. Wang L, Cuthbertson AJ, Zhang SH, Pender G, Shu AP, Wang YQ (2021) Graded bed load transport in sediment supply limited channels under unsteady flow hydrographs. J Hydrol 595:126015. https://doi.org/10.1016/j.jhydrol.2021.126015
  • 46. Waters KA, Curran JC (2015) Linking bed morphology changes of two sediment mixtures to sediment transport predictions in unsteady flows. Water Resour Res 51:2724–2741. https://doi.org/10.1002/2014WR016083
  • 47. Wójcik A, Klapa P, Mitka B, Sładek J (2018) The use of the photogrammetric method for measurement of the repose angle of granular materials. Measurement 115:19–26. https://doi.org/10.1016/j.measurement.2017.10.005
  • 48. Wu C, Nitterour JA (2020) Impacts of backwater hydrodynamics on fluvial–deltaic stratigraphy. Basin Res 32(3):567–584. https://doi.org/10.1111/bre.12385
  • 49. Yager EM, Venditti JG, Smith HJ, Schmeeckle MW (2018) The trouble with shear stress. Geomorphology 323:41–50. https://doi.org/10.1016/j.geomorph.2018.09.008
  • 50. Yen CL, Lee KT (1995) Bed topography and sediment sorting in channel bend with unsteady flow. J Hydraul Eng 121(8):591–599. https://doi.org/10.1061/(ASCE)0733-9429(1995)121:8(591)
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-000176b6-0510-4d5d-8c5f-c808d6670afc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.