Warianty tytułu
Języki publikacji
Abstrakty
Since the physical interpretation of practical Kedem-Katchalsky equations is not clear, we consider an alternative, mechanistic approach to membrane transport generated by osmotic and hydraulic pressure. We study a porous membrane with randomly distributed pore sizes (radii). We postulate that the reflection coefficient (σp) of a single porę may equal 1 or 0 only. From this postulate we derive new (mechanistic) transport equations. Their advantage is in clear physical interpretation.
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
p.983-993,fig.,ref.
Twórcy
autor
- Institute of Physics, Swietokrzyska Academy, 25-406 Kielce, Poland
Bibliografia
- 1. Katchalsky, A. and Curran, P. F. Nonequilibrium Thermodynamics in Biophysics, Harvard University Press, Cambridge, Massachusetts, 1965, 113-132.
- 2. Kedem, O. and Katchalsky, A. Thermodynamics analysis of the permeability of biological membranes to non - electrolytes. Biochim. Biophys. Acta 27 (1958) 229-246.
- 3. Kedem, O. and Katchalsky, A. A physical interpretation of the phenomenological coefficients of membrane permeability. J. Gen. Physiol. 45 (1961) 143-179.
- 4. Fiscus, E. L. Determination of hydraulic and osmotic properties of soybean root systems. Plant Physiol. 59 (1977) 1013-1020.
- 5. Ginsburg, H. Model for iso-osmotic water flow in plant root. J. Theor. Biol. 32 (1971) 147-159.
- 6. Levitt, D. G. A new theory of transport for cell membrane pores (General theory and application to red cell). Biochim. Biophys. Acta 373 (1974) 115-131.
- 7. Sha’afi, R. J. and Gary-Bobo, C. M. Water and non - electrolytes permeability in mammalian red cell membranes (Butler, J. A. V., Noble, D., Eds.), Progress in Biophysics and Molecular Biology, Pergamon Press, Oxford and New York, 26 (1976) 105-144.
- 8. Sha’afi, R. J., Rich, G. T., Mikulecky, D. C. and Solomon, A. K. Determination of urea permeability in red cells by minimum method. J. Gen. Physiol. 55 (1970) 427-450.
- 9. Steudle, E., Oren, R. and Schulze, E. D. Water transport in maize roots. Plant. Physiol. 84 (1987) 1220-1232.
- 10. Del Castillo, L. F. and Mason, E. A. Generalisation of membrane reflection coefficients for nonideal, nonisothermal, multicomponent systems with external forces and viscous flow. J. Memb. Sci. 28 (1986) 229-267.
- 11. Imai, Y. Membrane transport system modeled by network thermodynamics. J. Memb. Sci. 41 (1989) 3-21.
- 12. Kargol, M. A more general form of Kedem and Katchalsky's practical equations. J. Biol. Phys. 22 (1996) 15-26.
- 13. Monticelli, G. and Celentano, F. Further properties of the two-membrane model. Bull. Math. Biol. 45 (1983) 1073-1096.
- 14. Spiegler, K. S. and Kedem, O. Thermodynamics of hyperfiltration (reverse osmosis): criteria for efficient membranes. Desalination 1 (1966) 311-326.
- 15. Zelman, A. Membrane permeability. Generalisation of the reflection coefficient method of describing volume and solute flows. Biophys. J. Memb. 12 (1972)414-419.
- 16. Kargol, A. A mechanistic model of transport processes in porous membranes generated by osmotic and hydraulic pressures. J. Memb. Sci. 191 (2001) 61-69.
- 17. Kargol, A. and Kargol, M. Membrane transport generated by the osmotic and hydraulic pressure. Correlation relation for parameters Lp, σ and ω. J. Biol. Phys. 26 (2000) 307-320.
- 18. Kargol, M. and Kargol, A. Mechanistic formalism for membrane transport generated by osmotic and mechanical pressure. Gen. Physiol. Biophys. - in press.
- 19. Kargol, M. and Kargol, A. Mechanistic equations for membrane substance transport and their identity with Kedem-Katchalsky equations. Biophys. Chem. - in press.
- 20. Kargol, M., Kargol, A. and Przestalski, S. Studies on the structural properties of porous membranes: Measurement of linear dimensions of solutes. Biophys. Chem. 91 (2001) 263-271.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-fe8f3dbe-7e08-4a50-89c7-a82fc14ead3b