Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 40 |
Tytuł artykułu

Flood risk zoning of Satluj River Basin, Himachal Pradesh, India

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Increasing intensity and frequency of rainfall coupled with gradual retreating of glaciers due to climate change in Himalayan region likely to increase the risk of floods. A better understanding of risk zones which are vulnerable to flood disasters can be evolved from the detailed studies on slope, geomorphology and land use/ land cover pattern. Information of these parameters is an important input for the identification of vulnerable areas. Flood risk maps provide useful information about places that may be at risk from flooding. It offers a cost-effective solution for planning, management and mitigation strategies in risky areas. Traditional methods of flood risk mapping are based on ground surveys and aerial observations, but when the phenomenon is widespread, such methods are time consuming and expensive. The possible combination of DEM and other maps of area using an overlay operation method within the Geographical Information System (GIS) platform can lead to derivation and the understanding of spatial association between various parameters which could be used to predict flood risk zones. The study area i.e. Satluj River Basin has been broadly divided into five risk zones viz., very low, low, moderate, high and very high which helped to differentiate between areas that are at risk of different intensities of flood. The very high flood risk zone covers only 3.25 % of total study area, while the very low risk zone covers 13.63 %. The area falls within the very high and high risk constitutes 9.52 % of total basin area. Domain of moderate risk covers an area of 30.66 %. But the maximum area of river basin is constituted by low risk zone i.e. 46.19 %. Identification of such zones will help in timely adopting of mitigation and adaptation measures. Preparation of flood risk zoning maps also helps in regulating indiscriminate and unplanned land use practices in risky areas.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
40
Opis fizyczny
p.8-17,fig.,ref.
Twórcy
autor
  • Department of Environment Studies, Panjab University, Chandigarh, India
autor
  • Department of Environmental Sciences, MDU, Rohtak (Haryana), India
Bibliografia
  • [1] S.K. Bartarya, N.S. Virdi, M.P. Sah (1996) Landslide hazards: Some case studies from the Satluj Valley, Himachal Pradesh: Himalayan Geology, 17: 193-207.
  • [2] V. Gupta, M.P. Sah (2008) Impacts of the Trans-Himalayan Landslide Lake Outburst Flood (LLOF) in the Satluj catchment, Himachal Pradesh, India, Natural Hazards, 45: 379-390.
  • [3] V. Gupta, M.P. Sah (2008) Spatial variability of mass movements in the Satluj valley, Himachal Pradesh during 1900-2006, Journal of Mountain Science, 5: 38-51.
  • [4] V. Gupta, M.P. Sah, N.S. Virdi, S.K. Bartarya (1994) Landslide hazard zonation in the Upper Satluj Valley, District. Kinnaur, Himachal Pradesh, Journal of Himalayan Geology, 4(1): 81-93.
  • [5] IPCC (2007) Summary for Policymakers, climate change 2007: Impacts, adaptations and vulnerability, a report of working group II of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK and New York, USA.
  • [6] V. Jain, R. Sinha (2003) Derivation of unit hydrograph from GIUH analysis for the Himalayan River, Water Resources Management., 17: 355-375.
  • [7] V. Jain, R. Sinha (2003) Evaluation of the geomorphic control on flood hazard through geomorphic instantaneous unit hydrograph, Current Science, 85 (11): 1596-1600.
  • [8] J. Lastra, E. Fernández, A Díez-Herrero, J. Marquínez (2008) Flood hazard delineation combining geomorphological and hydrological methods: an example in the Northern Iberian Peninsula, Natural Hazards, 45: 277–293.
  • [9] E.P. Maurer, P.B. Duffy (2005) Uncertainty in projections of streamflow changes due to climate change in California, Geophysical Research Letters, 32, doi: 10.1029/2004GL021462.
  • [10] M.A. Nearing, V. Jetten, C. Baffaut, O. Cerdan, A. Couturier, M. Hernandez, Y. Le Bissonnais, M.H. Nichols, J.P. Nunes, C.S. Renschler, V. Souchère, L. Van Oost (2005) Modeling response of soil erosion and runoff to changes in precipitation and cover, Catena, 61: 131-154.
  • [11] P. Pramojanee, C. Tanavud, C. Yongchalermchai, C. Navanugraha (2001) An Application of GIS for mapping of flood hazard and risk area in Nakorn Sri Thammarat province, South of Thailand.
  • [12] R. Rangachari (2006) Flood plain zoning and management, Proceedings of the First India Disaster Management Congress, 29th-30th November, National Institute of Disaster Management (NIDM), New Delhi, India.
  • [13] B.T. Rumsby, M.G. Macklin (1994) Channel and floodplain response to recent abrupt climate change: The Tyne basin, northern England, Earth Surface Processes and Landforms, 19: 499-515.
  • [14] J. Sanyal, X.X. Lu (2004) Application of remote sensing in flood management with special reference to monsoon Asia: a review, Natural Hazards, 33: 283-301.
  • [15] R. Sugumaran, C.H. Davis, J. Meyer, T. Prato, C. Fulcher (2000) Web-Based Decision Support Tool for Floodplain Management using High Resolution DEM, Photogrammetric Engineering and Remote Sensing (PE&RS), 66(10): 1261-1265.
  • [16] M.G. Wolman (1971) Evaluating alternative techniques of floodplain mapping, Water Resources Researches 7: 1383-1392.
Uwagi
Rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.agro-fbd2ad1a-69d0-4e7d-875d-a8602acaf4ed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.