Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 35 | 12 |
Tytuł artykułu

How do expansins control plant growth? A model for cell wall loosening via defect migration in cellulose microfibrils

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Expansins are plant cell wall-loosening proteins that promote cell growth and are essential for many critical developmental processes and stress responses. The molecular basis for expansin action is uncertain. Recently, it has been proposed that expansins loosen the wall by means of the generation of mobile conformational defects at the surface of cellulose microfibrils. The present work addresses this hypothesis by elaborating three assumptions: (1) microfibril–matrix interfaces cause steep stress gradients on the microfibril surface, (2) stress gradients drive the motion of conformational defects along the microfibril surface toward the microfibril–matrix interfaces, and (3) the approach of the defects to the microfibril–matrix interfaces facilitates the dissociation of matrix polysaccharides from cellulose microfibrils.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
35
Numer
12
Opis fizyczny
p.3277-3284,fig.,ref.
Twórcy
  • Department of Plant Physiology and Biochemistry, Saint Petersburg State University, Universitetskaya em. 7-9, 199034 Saint Petersburg, Russia
Bibliografia
  • Bergenstrahle M, Thormann E, Nordgren N, Berglund LA (2009) Force pulling of single cellulose chains at the crystalline cellulose–liquid interface: a molecular dynamics study. Langmuir 25:4635–4642. doi: 10.1021/la803915c
  • Boyd RH (1985) Relaxation processes in crystalline polymers: molecular interpretation—a review. Polymer 26:1123–1133. doi: 10.1016/0032-3861(85)90240-X
  • Carey RE, Hepler NK, Cosgrove DJ (2013) Selaginella moellendorffii has a reduced and highly conserved expansin superfamily with genes more closely related to angiosperms than to bryophytes. BMC Plant Biol 13:4. doi: 10.1186/1471-2229-13-4
  • Cheniclet C, Rong WY, Causse M, Frangne N, Bolling L, Carde JP, Renaudin JP (2005) Cell expansion and endoreduplication show a large genetic variability in pericarp and contribute strongly to tomato fruit growth. Plant Physiol 139:1984–1994. doi: 10.1104/pp.105.068767
  • Choi D, Cho H-T, Lee Y (2006) Expansins: expanding importance in plant growth and development. Physiol Plant 126:511–518. doi: 10.1111/j.1399-3054.2006.00612.x
  • Cosgrove DJ (1989) Characterization of long-term extension of isolated cell walls from growing cucumber hypocotyls. Planta 177:121–130
  • Cosgrove DJ (1993) Water-uptake by growing cells—an assessment of the controlling roles of wall relaxation, solute uptake, and hydraulic conductance. Int J Plant Sci 154:10–21
  • Cosgrove DJ (1998) Cell wall loosening by expansins. Plant Physiol 118:333–339. doi: 10.1104/pp.118.2.333
  • Cosgrove DJ (2000a) Expansive growth of plant cell walls. Plant Physiol Biochem 28:109–124. doi: 10.1016/S0981-9428(00)00164-9
  • Cosgrove DJ (2000b) Loosening of plant cell walls by expansins. Nature 407:321–326. doi: 10.1038/35030000
  • Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861. doi: 10.1038/nrm1746
  • Cosgrove DJ, Bedinger P, Durachko DM (1997) Group I allergens of grass pollen as cell wall-loosening agents. Proc Natl Acad Sci USA 94:6559–6564
  • Cosgrove DJ, Durachko DM, Li L-C (1998) Expansins may have cryptic endoglucanase activity and can synergize the breakdown of cellulose by fungal cellulases. Annu Meet Am Soc Plant Physiol Abstr 171
  • Cosgrove DJ, Li LC, Cho HT, Hoffmann-Benning S, Moore RC, Blecker D (2002) The growing world of expansins. Plant Cell Physiol 43:1436–1444. doi: 10.1093/pcp/pcf180
  • Davies LM, Harris PJ, Newman RH (2002) Molecular ordering of cellulose after extraction of polysaccharides from primary cell walls of Arabidopsis thaliana: a solid-state CP/MAS 13C NMR study. Carbohydr Res 337:587–593. doi: 10.1016/S0008-6215(02)00038-1
  • Dick-Pérez M, Zhang Y, Hayes J, Salazar A, Zabotina OA, Hong M (2011) Structure and interactions of plant cell-wall polysaccharides by two-and three-dimensional magic-angle-spinning solid-state NMR. Biochemistry 50:989–1000. doi: 10.1021/bi101795q
  • Georgelis N, Tabuchi A, Nikolaidis N, Cosgrove DJ (2011) Structure-function analysis of the bacterial expansin EXLX1. J Biol Chem 286:16814–16823. doi: 10.1074/jbc.M111.225037
  • Georgelis N, Yennawar N, Cosgrove DJ (2012) Structural basis for entropy-driven cellulose binding by a type-A cellulose-binding module (CBM) and bacterial expansin. Proc Natl Acad Sci USA 109:14830–14835. doi: 10.1073/pnas.1213200109
  • Hackney JM, Atalla RH, VanderHart DL (1994) Modification of crystallinity and crystalline structure of Acetobacter xylinum cellulose in the presence of water-soluble beta-1,4-linked polysaccharides: 13C-NMR Evidence. Int J Biol Macromol 16:215–218
  • Hardy BJ, Sarko A (1996) Molecular dynamic simulations and diffraction-based analysis of the native cellulose fibre: structural modeling of the I-α and I-β phases and their interconversion. Polymer 37:1833–1839. doi: 10.1016/0032-3861(96)87299-5
  • Horikawa Y, Sugiyama J (2009) Localization of crystalline allomorphs in cellulose microfibril. Biomacromolecules 10:2235–2239. doi: 10.1021/bm900413k
  • Jarvis MC (2000) Interconversion of the Iα and Iβ crystalline forms of cellulose by bending. Carbohydr Res 325:150–154. doi: 10.1016/S0008-6215(99)00316-X
  • Kerff F, Amoroso A, Herman R, Sauvage E, Petrella S, Filée P, Charlier P, Joris B, Tabuchi A, Nikolaidis N, Cosgrove DJ (2008) Crystal structure and activity of Bacillus subtilis YoaJ (EXLX1), a bacterial expansin that promotes root colonization. Proc Natl Acad Sci USA 105:16876–16881. doi: 10.1073/pnas.0809382105
  • Kutschera U (1996) Cessation of cell elongation in rye coleoptiles is accompanied by a loss of cell-wall plasticity. J Exp Bot 47:1387–1394. doi: 10.1093/jxb/47.9.1387
  • Li Z-C, Durachko DM, Cosgrove DJ (1993) An oat coleoptile wall protein that induces wall extension in vitro and that is antigenically related to a similar protein from cucumber hypocotyls. Planta 191:349–356. doi: 10.1007/BF00195692
  • Lipchinsky A (2010) A model for expansin action by activation of soliton excitations in cellulose microfibrils. St. Petersburg University, Bulletin Ser. 3 No 1:108–119
  • Manevich LI, Simmons VV (2008) Solitons in Macromolecular Systems. Nova Science Publishers, New York, p 134
  • McQueen-Mason SJ, Cosgrove DJ (1994) Disruption of hydrogen-bonding between plant cell wall polymers by proteins that induce wall extension. Proc Natl Acad Sci USA 91:6574–6578. doi: 10.1073/pnas.91.14.6574
  • McQueen-Mason S, Cosgrove DJ (1995) Expansin mode of action on cell walls. Analysis of wall hydrolysis, stress relaxation, and binding. Plant Physiol 107:87–100
  • McQueen-Mason S, Durachko DM, Cosgrove DJ (1992) Two endogenous proteins that induce cell-wall extension in plants. Plant Cell 4:1425–1433. doi: 10.1105/tpc.4.11.1425
  • McQueen-Mason SJ, Fry SC, Durachko DM, Cosgrove DJ (1993) The relationship between xyloglucan endotransglycosylase and in vitro cell wall extension in cucumber hypocotyls. Planta 190:327–331. doi: 10.1007/BF00196961
  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082. doi: 10.1021/ja0257319
  • Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306. doi: 10.1021/ja037055w
  • Rondeau-Mouro C, Bouchet B, Pontoire B, Robert P, Mazoyer J, Buléon A (2003) Structural features and potential texturising properties of lemon and maize cellulose microfibrils. Carbohydr Polym 53:241–252. doi: 10.1016/S0144-8617(03)00069-9
  • Rose JKC, Braam J, Fry SC, Nishitani K (2002) The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: current perspectives and a new unifying nomenclature. Plant Cell Physiol 43:1421–1435. doi: 10.1093/pcp/pcf171
  • Ruel K, Nishiyama Y, Joseleau JP (2012) Crystalline and amorphous cellulose in the secondary walls of Arabidopsis. Plant Sci 193–194:48–61. doi: 10.1016/j.plantsci.2012.05.008
  • Schopfer P (2006) Biomechanics of plant growth. Am J Bot 93:1415–1425. doi: 10.3732/ajb.93.10.1415
  • Sharova EI (2007) Expansins: proteins involved in cell wall softening during plant growth and morphogenesis. Russ J Plant Physiol 54:713–727. doi: 10.1134/S1021443707060015
  • Shcherban TY, Shi J, Durachko DM, Guiltinan MJ, McQueen-Mason SJ, Shieh M, Cosgrove DJ (1995) Molecular cloning and sequence analysis of expansins—a highly conserved, multigene family of proteins that mediate cell-wall extension in plants. Proc Natl Acad Sci USA 92:9245–9249. doi: 10.1073/pnas.92.20.9245
  • Smith BG, Harris PJ, Melton LD, Newman RH (1998) Crystalline cellulose in hydrated primary cell walls of three monocotyledons and one dicotyledon. Plant Cell Physiol 39:711–720
  • Šturcová A, His I, Apperley DC, Sugiyama J, Jarvis MC (2004) Structural details of crystalline cellulose from higher plants. Biomacromolecules 5:1333–1339. doi: 10.1021/bm034517p
  • Tabuchi A, Li L-C, Cosgrove DJ (2011) Matrix solubilization and cell wall weakening by expansin (group-1 allergen) from maize pollen. Plant J 68:546–559. doi: 10.1111/j.1365-313X.2011.04705.x
  • Tokoh C, Takabe K, Sugiyama J, Fujita M (2002) Cellulose synthesized by Acetobacter xylinum in the presence of plant cell wall polysaccharides. Cellulose 9:65–74. doi: 10.1023/A:1015827121927
  • Tomos D, Pritchard J (1994) Biophysical and biochemical control of cell expansion in roots and leaves. J Exp Bot 45:1721–1731
  • Van Sandt V, Suslov D, Verbelen J-P, Vissenberg K (2007) Xyloglucan endotransglucosylase activity loosens a plant cell wall. Ann Bot 100:1467–1473. doi: 10.1093/aob/mcm248
  • Vandenbussche F, Verbelen J-P, Van Der Straeten D (2005) Of light and length: regulation of hypocotyl growth in Arabidopsis. BioEssays 27:275–284. doi: 10.1002/bies.20199
  • Veytsman BA, Cosgrove DJ (1998) A model of cell wall expansion based on thermodynamics of polymer networks. Biophys J 75:2240–2250. doi: 10.1016/S0006-3495(98)77668-4
  • Viëtor RJ, Newman RH, Ha M-A, Apperley DC, Jarvis MC (2002) Conformational features of crystal-surface cellulose from higher plants. Plant J 30:721–731. doi: 10.1046/j.1365-313X.2002.01327.x
  • Wojtaszek P (2000) Genes and plant cell walls: a difficult relationship. Biol Rev 75:437–475. doi: 10.1111/j.1469-185X.2000.tb00051.x
  • Wojtaszek P, Volkmann D, Baluška F (2004) Polarity and cell walls. In: Lindsey K (ed) Polarity in Plants, Blackwell Publishing,Oxford pp 72–121
  • Yennawar NH, Li LC, Dudzinski DM, Tabuchi A, Cosgrove DJ (2006) Crystal structure and activities of EXPB1 (Zea m 1), a β-expansin and group-1 pollen allergen from maize. Proc Natl Acad Sci USA 103:14664–14671. doi: 10.1073/pnas.0605979103
  • Yuan S, Wu Y, Cosgrove DJ (2001) A fungal endoglucanase with plant cell wall extension activity. Plant Physiol 127:324–333. doi: 10.1104/pp.127.1.324
Uwagi
rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-f9e87345-fd57-4a84-8ce9-5fd3a4767f43
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.