Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 24 | 2 |
Tytuł artykułu

Chromium accumulation and toxicity in corn (Zea mays L.) seedlings

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Extensive use of chromate compounds in the last few decades has resulted in contamination of our environment. In the present study we have investigated the effects of two different concentrations (10, 20 µg ml⁻¹) of chromium salts (CrCl₃, K₂CrO₄ K₂Cr₂O₇) on the growth of Zea mays L. As concentrations of chromium salts (CrCl₃, K₂CrO₄, K₂Cr₂O₇) increased, there was a significant decrease in seed germination ( 10-24%), shoot length (6-29%), root length ( 11 -33%), seedling length ( 16-24%), fresh weight of seedlings (17-67%) and increase in dry weight per seedling (3-15%), chromium content, acid phosphatases content (215-707%), and peroxidases activity (129-200%) of Zea mays plants compared to control treatment. In all treatments, the effect of hexavalent salts (K₂CrO₄ andK₂Cr₂O₇) was more severe on plant growth compared to trivalent Cr salts (CrCl₃). Zea mays plants have the ability to accumulate various chromium salts in their tissues and thus help to remediate the polluted soil.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
24
Numer
2
Opis fizyczny
p.899-904,ref.
Twórcy
autor
  • Department of Botany, University of the Punjab, Quaid-e-Azam Campus, Lahore-54590, Pakistan
autor
  • Department of Microbiology and Molecular Genetics, University of the Punjab Quaid-e-Azam Campus, Lahore-54590, Pakistan
autor
  • Department of Botany, University of the Punjab, Quaid-e-Azam Campus, Lahore-54590, Pakistan
autor
  • Department of Microbiology and Molecular Genetics, University of the Punjab Quaid-e-Azam Campus, Lahore-54590, Pakistan
Bibliografia
  • 1. LI L., LI F. S., XIONG D. Q., SONG, C. Y., Heavy metal contamination and their distribution in different size fractions of the surficial sediment of Haihe River, China. Environ. Geol. 50, 431-438, 2006.
  • 2. ZHANG M. Y., CUI L. J., SHENG L. X., WANG Y. F., Distribution and enrichment of heavy metals among sediments, water body and plants in Hengshuihu wetland of Northern China. Ecol. Eng. 35, 563-569, 2009.
  • 3. WANI P. A., KHAN M. S., ZAIDI A., Effect of metal tolerant plant growth promoting Bradyrhizobium sp. (Vigna) on growth symbiosis seed yield and metal uptake by greengram plants. Chemosphere. 70, 36-45, 2007.
  • 4. NOURI J., MAHVI A. H., JAHED G. R., BABAEI A. A., Regional distribution pattem of groundwater heavy metals resulting from agricultural activities. Environ. Geol. 55, 1337-1343, 2008.
  • 5. ATAFAR Z., MESDAGHINIA A., NOURI J., HOMAEE M., YUNESIAN M., AHMADIMOGHADDAM M., MAHVI A. H., Effect of fertilizer application on soil heavy metal concentration. Environ. Monitor. Assess. 1-7, 2008.
  • 6. MUSARRAT J., ZAIDI A., KHAN M. S., SIDDIQUI M. A., AL-KHEDHAIRY A. A., Genotoxicity assessment of heavy metal-contaminated soils. M.S. Khan, A. Zaidi, R. Goel, J. Musarrat (Eds.), Biomanagement of metal-contaminated soils, Springer Wien, New York, pp. 323-342, 2011.
  • 7. BRUNETTI G., FARRAG K., ROVIRA P. S., NIGRO F., SENESI N., Greenhouse and field studies on Cr, Cu, Pb and Zn phytoextraction by Brassica napus from contaminated soils in the Apulia region, Southern Italy. Geoderma. 160, 517-523, 2011.
  • 8. DONG J., WU F., HUANG R. and ZANG G., A Chromiumtolerant plant growing in Cr-contaminated land. Int. J. Phytoremdiat. 9, 167-179, 2007.
  • 9. AKHIONBARE S. M. O., EBE T. E., AKHIONBARE W. N., AC-CHUKWUOCHA N., Heavy metal uptake by com (Zea mays) grown on contaminated soil. Res. J. Agri. Biol. Sci. 6, 993-997, 2010.
  • 10. SHAHANDEH, H. AND HOSSNER, L. R. Plant screening for chromium phytoremediation, Int. J. Phytoremediat, 2, 31-51,2000.
  • 11. SHAMS K.M., TICHY G., FISCHERA., SAGER M., PEER T., ASHTAR B., FILIP K., Aspects of phytoremediation for chromium contaminated sites using common plants Urtica dioica, Brassica napus and Zea mays. Plant Soil, 328, 175- 189, 2010.
  • 12. RAND M. C., ARNOLD E., MICHEL J., Standard methods for the examination of water and wastewater. New York: American Public Health Association, 1979.
  • 13. DAVID R., MURRAY E., Protein synthesis in dark brown leaves. Can. J. Bot. 43, 817-824,1965.
  • 14. IQBAL J., RAFIQUE N., Toxic effect of barium chloride on germination, early seedling growth, soluble proteins and acid phosphatase in Zea mays L. Pak. J. Bot. 19, 1-8, 1986.
  • 15. AVUDAINAYAGAM S., MEGHARAJ M., OWENS G., KOOKANA R. S., CHITTLEBOROUGH D., NAIDU R., Chemistry of chromium in soils with emphasis on tannery waste sites. Rev. Environ. Contam. Toxicol. 178, 53-91,2003.
  • 16. ZAYED A. M., TERRY N., Chromium in the environment: factors affecting biological remediation. Plant Soil. 249, 139-156, 2003.
  • 17. OLIVEIRA H., Chromium as an environmental pollutant: insights on induced plant toxicity. J. Bot. 12, 1-8, 2012: doi: 10.1155/2012/375843.
  • 18. LÓPEZ-LUNA J., GONZÁLEZ-CHÁVEZ M. C., ESPARZA-GARCÍA F. J. AND RODRÍGUEZ-VÁZQUEZ R., Toxicity assessment of soil amended with tannery sludge, trivalent chromium and hexavalent chromium, using wheat, oat and sorghum plants. J. Hazard. Mater. 163: 829-834, 2009.
  • 19. MALLICK S., SINAM G., KUMAR-MISHRA R., SINHA S., Interactive effects of Cr and Fe treatments on plants growth, nutrition and oxidative status in Zea mays L. Ecotoxicol. Environ. Safe. 73, 987-995, 2010.
  • 20. MANT C., COSTA S., WILLIAMS J., TAMBOURGI E., Phytoremediation of chromium by model constructed wetland. Bioresource Technol. 97, 1767-1772, 2006.
  • 21. GAFOORI M., MAJID N. M., ISLAM M. M., LUHAT S., Bioaccumulation of heavy metals by Dyera costulata cultivated in sewage sludge contaminated soil. Afr J Biotechnol. 10, 10674-10682, 2011.
  • 22. TOPPI L. SANIT DI., FOSSATI F., MUSETTI R., MIKEREZI, I., FAVALI M. A., Effects of hexavalent chromium on maize, tomato, and cauliflower plants. J. Plant Nutrit. 25, 701-717, 2002.
  • 23. LIU D., ZOU J., WANG M., AND JIANG W., Hexavalent chromium uptake and its effects on mineral uptake, antioxidant defence system and photosynthesis in Amaranthus viridis L.Bioresource Technol. 99, 2628-2636, 2008.
  • 24. DEY S. K., JENA P. P., KUNDU S., Antioxidative efficiency of Triticum aestivum L. exposed to chromium stress. J. Environ. Biol. 30, 539-544, 2009.
  • 25. WYSS M., PASAMONTES L., RÉMY R., KOHLER J., KUSZNIR E., GADIENT M., MÜLLER F., VAN LOON APGM., Comparison of the thermostability properties of three acid phosphatases from molds: Aspergillus fumigatus phytase, A. niger phytase, and A. niger PH 2.5 acid phosphatase. Appl Environ. Microbiol. 64,4446-4451,1998.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-f94c8b5f-664e-4f1a-abeb-ef5cb078173b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.