Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 25 | 3 |
Tytuł artykułu

Cold cracking of S460N steel welded in water environment

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper shows results of weldability testing of fine-grained high -strength low- alloy S460N steel welded in water environment by covered electrodes. The tests were carried out by using the CTS test specimens with fillet welds. Four specimens were welded under water and one specimen in air. Welded joints were subjected to non-destructive visual and penetration tests. The accepted joints were then subjected to macroscopic and microscopic inspection and Vickers hardness measurements as well. The experiments showed that S460N steel welded in water environment is characterized by a high susceptibility to cold cracking
Słowa kluczowe
Wydawca
-
Rocznik
Tom
25
Numer
3
Opis fizyczny
p.131-136,fig.,ref.
Twórcy
autor
  • Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
  • Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
autor
  • Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
autor
  • Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
Bibliografia
  • 1. Wang, J., Sun, Q., Jiang, Y., Zhang, T., Ma, J., & Feng, J.: Analysis and improvement of underwater wet welding process stability with static mechanical constraint support. Journal of Manufacturing Processes, 34 (2018), pp. 238-250.
  • 2. Hu Y., Shi YH., Shen XQ., Wang ZM.: Microstructure, pitting corrosion resistance and impact toughness of duplex stainless steel underwater dry hyperbaric Flux-Cored Arc. Materials, 10 (12) (2018), pp. 1443.
  • 3. Fydrych D., Łabanowski J., Tomków J., Rogalski G.: Cold cracking of underwater wet welded S355G10+N high strength steel. Advances in Materia ls Science, Vol. 16., iss. 3 (2015), pp. 48-56
  • 4. Fydrych D., Łabanowski J., Rogalski G.: Wel d abilit y of hig h strength steels in wet welding conditions. Polish Maritime Research, 2 (2013), pp. 67-73.
  • 5. Świerczyńska A., Fydrych D., Rogalski G.: Diffusible hydrogen management in underwater wet self-shielded flux cored arc welding. International Journal of Hydrogen Energy, 42(38) (2017), pp. 24532-24540.
  • 6. Li HL., Liu D., Song YY., Yan YT., Guo N., Feng JC.: Microstr ucture and mechanical proper ties of under water wet welded high carbon-equivalent steel Q460 using austenitic consumables. Journal of Materials Processing Technology, 249 (2017), pp. 149-157.
  • 7. Santos V. R., Monteiro M. J., Rizzo F.C., Bracarense A. Q., Pessoa E. C. P., Marinho R. R., Vieira L. A.: Development of an oxyrutile electrode for wet welding. Welding Journal, 91(2012), pp. 319-328.
  • 8. Garašić I., Krajl S., Kožuh S.: Investigation into cold cracking in underwater wet welding of API5L X70 steel. Transactions of FAMENA, 3 (2009), pp. 25-34.
  • 9. Maksimov S. Yu.: Underwater arc welding of higher strength low-alloy steels. Welding International Vol. 24, Iss. 6 (2010), pp. 449-454.
  • 10. Rogalski G., Łabanowski J., Fydrych D., Tomków J.: Bead-on-plate welding on S235JR steel by underwater local dry chamber process. Polish Maritime Research, 21 (2014), pp. 58-64.
  • 11. Kannengiesser T., Boellinghaus T.: Cold cracking tests- an overview of present technologies and applications. Weld i ng in the World, 1 (2013), pp. 3-37.
  • 12. Kurji R., Coniglio N.: Towards the establishment of weldability test standards for hydrogen-assisted cold cracking. The International Journal of Advanced Manufacturing Technology, 77 (2015), pp. 1581-1597.
  • 13. Chen H., Guo N., Shi X., Du Y., Feng J., Wang G.: Effect of hydrostatic pressure on protective bubble characteristic and weld quality in underwater f lux-cored wire wet welding. Journal of Materials Processing Technology, 259 (2018), 159-168.
  • 14 . Guo N., Liu D., Guo W., Li H., Feng J.: Effect of Ni on microstructure and mechanical properties of underwater wet welding joint. Materials & Design, 77 (2015), pp. 25-31.
  • 15. Sajek A., Nowacki J.: Comparative evaluation of various experimental and numerical simulation methods for determination of t8/5 cooling times in HPAW process weldments. Archives of Civil and Mechanical Engineering, 18(2) (2018), pp. 583-591.
  • 16. Górka J.: Microstructure and properties of high-temperature (HAZ) of thermos-mechanically treated S700MC high-yield-strength steel. Materiali Tehnologije/Materials Technologies, 50 (4) (2016), pp. 617-621.
  • 17. Gao W.B., Wang D.P., Cheng F.J., Deng C.Y., Xu W.: Underwater wet welding for HSLA steels: chemical composition, defects, microstructures, and mechanical properties. Acta Metallurgica Sinica (English Letters), 9 (2015), pp. 1097-1108.
  • 18. Gao W., Wang D., Cheng F., Di X., Xu W.: Micro-structural and mechanical performance of underwater wet welded S355 steel. Journal of Materials Processing Technology, 238 (2016), pp. 333-340.
  • 19. Fydrych D., Świerczyńska A., Rogalski G., Łabanowski J.: Temper bead welding of S420G2+M steel in water environment. Advances in Materials Science, Vol. 16, iss. 4 (2016), pp. 5-16.
  • 20. Zhang H.T., Dai X.Y., Feng J.C., Hu L.L.: Preliminary investigation on real-time induction heating-assisted underwater wet welding. Welding Journal, 1 (2015), pp. 8-15.
  • 21. Gao W., Wang D., Cheng F., Deng C., Liu Y., Xu W.: Enhancement of the fatigue strength of underwater wet welds by grinding and ultrasonic impact treatment. Journal of Materials Processing Technology, 223 (2015), pp. 305-312.
  • 22. Sun Q.J., Cheng W.Q., Liu Y.B., Wang J.F., Cai C.W., Feng J.C.: Microstr ucture and mechanical proper ties of ultra sonic assisted underwater wet welding joints. Materials & Design, 103 (2016), pp. 63-70.
  • 23. Fydrych D., Świerczyńska A., Rogalski G.: Effect of underwater wet welding conditions on the diffusible hydrogen content in deposited metal. Metallurgia Italiana, 11/12 (2015), pp. 47-52.
  • 24. Tomków J., Rogalski G., Fydrych D., Łabanowski J.: Improvement of S355G10+N steel weldability in water environment by Temper Bead Welding. Journal of Materials Processing Technology, 262 (2018), pp. 375-381.
  • 25. Tomków J., Fydrych D., Rogalski G., Łabanowski J.: Te m p e r bead welding of S460N steel in wet welding conditions. Advances in materials science, 3 (2018), pp. 5-13.
  • 26. http://www.lincolnelectric.com/plpl/Consumables/Pages/product.aspx?product=Products_ConsumableEU_StickElectrodes-Omnia-Omnia(LincolnElectric_EU_Base)
  • 27. Xiong J., Yang X., Lin W., Liu K.: Effects of welding parameters on microstructure and mechanical properties of underwater wet friction taper plug welded pipeline steel. Welding in the World, (2018), pp. 1-12.
  • 28. Xu Y.C., Jing H.Y., Han Y.D., Xu L.D.: Microstructures and mechanical properties od friction tapered stud overlap welding for X65 pipeline steel under wet conditions. Journal of Materials Engineering and Performance, 26(8) (2017), pp. 4092-4103.
  • 29. Wang F, Yang X., Yin Y., Cui L.: Thermal process influence on microstructure and mechanical behavior for friction taper plug welding in structural steel S355. The International Journal of Advanced Manufacturing Technology, 88(9-12) (2017), pp. 3459-3466.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-f8f22abe-971e-4751-9647-59b18a8d6c3c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.