Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 4 |
Tytuł artykułu

Microscopic and spectroscopic analyses of selected agricultural formulations containing various nanostructures

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the present study was to analyse commercially available compounds containing nanoparticles in the form of Ag, Cu, and Ag sulphate colloids applied in agriculture. The compounds were analysed with TEM and FTIR spectroscopy, i.e., methods that can complement the commonly used research techniques such as EDX or Raman spectroscopy. The results of the microscopic examinations evidenced the presence of single spherical agglomerates (small granules) of the nanoparticle-containing products. Infrared spectroscopy revealed the presence of bands characteristic of vibrations that can be assigned to nanoparticle-X interactions, where X = S, C, or O in aqueous colloid solutions of the analysed samples. Additionally, bands characteristic for C-H stretching vibrations (probably associated with vibrations of the -CH₂ and -CH₃ groups) were observed as bands originating from compounds used as the carriers of the analysed systems. In the case of Ag sulphate, the most distinct band with a maximum at 2,863 cm⁻¹, which is characteristic of SH···Ag vibrations, can be observed, and its intensity may be associated with the nanostructure composition of the formulation, which is more diverse than that in the other two compounds.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
26
Numer
4
Opis fizyczny
p.1565-1573,fig.,ref.
Twórcy
  • Department of Machinery Exploitation and Management of Production Processes, Faculty of Production Engineering, University of Life Sciences in Lublin, Lublin, Poland
  • Department of Cell Biology, Institute of Biology and Biotechnology, Maria Curie-Sklodowska University, 20-033 Lublin, Poland
  • Department of Biophysics, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
autor
  • Department of Cell Biology, Institute of Biology and Biotechnology, Maria Curie-Sklodowska University, 20-033 Lublin, Poland
Bibliografia
  • 1. FEEHAN J., HARLEY M., MINNEN J. Climate change in Europe. 1. Impact on terrestrial ecosystems and biodiversity. A review. Agron. Sustain. Dev. 29, 409, 2009.
  • 2. MILLER G., SENJEN R. Out of the laboratory and on to our plates. Nanotechnology in food & agriculture. In: Friends of the Earth, Australia, Europe & U.S.A. 2008.
  • 3. ROYAL SOCIETY AND ROYAL ACADEMY OF ENGINEERING. Nanoscience and nanotechnologies: opportunities and uncertainties. http:// www.nanotec.org.uk/2004.
  • 4. ISO/TC 229 Nanotechnologies. Accessed et: 11.02.2016. http://www.iso.org/iso/iso_technical_committee.html?commid=381983. 2005.
  • 5. YIN G., STEIGERT A., ANDRAE P., GOEBELT M., LATZEL M., MANLEY P., LAUERMANN I., CHRISTIANSEN S., SCHMID M. Integration of plasmonic Ag nanoparticles as a back reflector in ultra-thin Cu(In,Ga)Se₂ solar cells. Applied Surface Science 355, 800, 2015.
  • 6. KASHYAP P.L., XIANG X., HEIDEN P. Chitosan nanoparticle based delivery systems for sustainable agriculture, Int. J. Biol. Macromol. 77, 36, 2015.
  • 7. CHAUDHRY Q., CASTLE L. Food applications of nanotechnologies: an overview of opportunities and challenges for developing countries, Trends Food Sci. Technol. 22, 595, 2011.
  • 8. BUCHELI T.D., GOGOS K.K.A. Overview of Agricultural Applications of Nanotechnology; Nanotechnology for the Agricultural Sector: from Research to the Field. Workshop Organized by JRC IPTS Agri. Life Unit, Seville. 2013.
  • 9. KAH M., HOFMANN T. Nanopesticide research: current trends and future priorities, Environ. Int. 63, 224, 2014.
  • 10. LUTHER W. editor. Industrial applications of nanomaterials a chances and risks. Technology analysis. Düsseldorf: Future Technologies Division of VDI Technologiezentrum GmbH, 2004.
  • 11. MURR L.E., ESQUIVEL E.V., BANG J.J., DE LA ROSA G., GARDEA-TORRESDEY J.L. Chemistry and nanoparticulate compositions of a 10,000 year-old ice core melt water. Water Res. 38, 4282, 2004.
  • 12. MURR L.E., GARZA K.M. Natural and anthropogenic environmental nanoparticulates: their microstructural characterization and respiratory health implications. Atmos. Environ., 43, 2683, 2009.
  • 13. QAFOKU N.P. Terrestrial nanoparticles and their controls on soil-geo-processes and reactions. Adv. Agron., 107, 33, 2010.
  • 14. HUANG P.M., LI Y., SUMNER M.E. Handbook of soil sciences. Resource management and environmental impacts. CRC Press Taylor&Frencis Group, 2012.
  • 15. QAFOKU N.P. Terrestrial nanoparticles and their controls on soil-geo-processes and reactions. Adv. Agron. 107, 33, 2010.
  • 16. FDA, Glossary of Pesticide Chemicals, 2005. Available at: http://www.fda.gov/downloads/Food/FoodSafety/FoodContaminantsAdulteration/Pesticides/ucm114655.pdf (accessed 24.03.2016).
  • 17. DOLOREZ P.I. Nanomaterials Definitions, Classifications, and Applications. CHAPTER 1.1 Available at: https://books.google.pl/books?id (accessed 24.03.2016).
  • 18. CHAUDHRY Q., CASTLE L., WATKINS, R. (EDS.). Nanotechnologies in food. Royal Society of Chemistry Publishers, ISBN 978- 0-85404-169-5. 2010.
  • 19. GHORMADE V., DESHPANDE M.V., PAKNIKAR K.M. Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnology Advances 29, 792, 2011.
  • 20. LIU S., YUAN, L., YUE X., ZHENG Z., TANG Z. Recent advances in nanosensors for organophosphate pesticide detection. Adv. Powder Technol. 19, 419, 2008.
  • 21. GŁÓD D., ADAMCZAK M., BEDNARSKI W. Selected aspects of the application of nanotechnology in food production. Żywność. Nauka. Technologia. Jakość 5 (96), 36, 2014 [In Polish].
  • 22. MAUTNER A., MAPLES H.A., KOBKEATTHAWIN T., KOKOL V., KARIM Z., LI K., BISMARCK A. Phosphorylated nanocellulose papers for copper adsorption from aqueous solutions. Int. J. Environ. Sci. Technol., 13, 1861, 2016.
  • 23. RAI M., YADAV A., GADE A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv., 27, 76, 2009.
  • 24. RAHMAN NIA J. Nanosilver for Preservation and Treatment of Disease in Agriculture Field. US Patent US2009/0075818; 2009.
  • 25. BERGESON L.L. Nanosilver pesticide products: what does the future hold? Environ. Qual. Manage., 19, 73, 2010.
  • 26. GONZALEZ-MELENDI P., FERNANDEZ-PACHECO R., CORONADO M.J. Nanoparticles as smart treatment-delivery systems in plants: assessment of different techniques of microscopy for their visualization in plant tissues. Ann. Bot-London. 101, 187, 2008.
  • 27. LU W., SENAPATI D., WANG S., TOVMACHENKO O., SINGH A.K., YU H., RAY P.C. Effect of surface coating on the toxicity of silver nanomaterials on human skin keratinocytes. Chem. Phys. Lett. 487, 92, 2010.
  • 28. ZHANG T., LIMING WANG L., QIANG CHEN Q., CHEN CH. Cytotoxic Potential of Silver Nanoparticles. Yonsei MedJ., 55 (2), 283, 2014.
  • 29. BOUWMEESTER H., DEKKERS S., NOORDAM M.Y., HAGENS W.I., BULDER A.S., de HEER C., ten VOORDE S.E.C.G.S., WIJNHOVEN W.P., MARVIN, H.J.P., SIPS A.J.A.M. Review of health safety aspects of nanotechnologies in food production. Regul. Toxicol. Pharmacol., 53, 52, 2009.
  • 30. MA X.M., GEISER-LEE J., DENG Y., KOLMAKOV A. Interactions between engineered NPs (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci. Total Environ., 408, 3053, 2010.
  • 31. KIM S.W., JUNG J.H., LAMASAL K., KIM Y.S., MIN J.S, LEE Y.S. Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology, 40 (1), 53, 2012.
  • 32. EDWARDS-JONES V. The benefits of silver in hygiene, personal care and healthcare. Letters in Applied Microbiology, 49 (2), 147, 2009.
  • 33. GONZALES-EGUIA A., ChAO-MING Fu., FU-YIN L., TU-FA L. Effects of nanocopper on copper availability and nutrients digestibility, growth performance and serum traits of piglets. Livestock Science, 126, 122, 2009.
  • 34. YRUELA I. Copper in plants: acquisition, transport and interactions. Funct. Plant Biol. 36, 409, 2009.
  • 35. GANESH R., SMERALDI J., HOSSEINI T., KHATIB L., OLSON B.H., ROSSO D. Evaluation of nanocopper removal and toxicity inmunicipal wastewaters. Environ Sci. Technol., 44, 7808, 2010.
  • 36. GRIFFITT R.J., LUO J., GAO J., BONZONGO J.C., BARBER D.S. Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ. Toxicol. Chem., 27, 1972, 2008.
  • 37. MUELLER N., NOWACK B. Exposure modeling of engineered nanoparticles in the environment. Environ. Sci. Technol., 42 (12), 4447, 2008.
  • 38. LI F., LEI C., SHEN Q., LI L., WANG M., GUO M. Analysis of copper nanoparticles toxicity based on a stress-responsive bacterial biosensor array. Nanoscale 5, 653, 2013.
  • 39. SALAM A.A., SINGARAVELAN R., VASANTHI P., BANGARUSUDARSAN S.A. Electrochemical fabrication of Ag-Cu nano alloy and its characterization: an investigation. J. Nanostruct. Chem. 5, 383, 2015.
  • 40. AKAIGHE N., MACCUSPIE M.I, NAVARRO D.A., AGA D.S., BANERJEE S., SOHN M., SHARMA V.K. Humic Acid-Induced Silver Nanoparticle Formation Under Environmentally Relevant Conditions, Environmental Science & Technology, 45 (9), 3895, 2011.
  • 41. ZARGAR M., HAMID A.A., BAKAR F.A., SHAMSUDIN M.N., SHAMELI K., JAHANSHIRI F., FARAHANI F. Green Synthesis and Antibacterial Effect of Silver Nanoparticles Using Vitex Negundo L., Molecules. 16 (8), 6667, 2011.
  • 42. GUPTA K., JANA P.C., MEIKAP A.K. Optical and electrical transport properties of polyaniline-silver nanocomposites, Synth. Met., 160, 1566, 2010.
  • 43. PHILIP D. Honey mediated green synthesis of silver nanoparticles, Spectrochim Acta A. Mol. Biomol. Spectrosc., 75 (3), 1078, 2010.
  • 44. SHAMELI K., BIN AHMAD M., JAZAYERI S.D., SEDAGHAT S., SHABANZADEH P., JAHANGIRIAN H., MAHDAVI M., ABDOLLAHI Z. Synthesis and Characterization of Polyethylene Glycol Mediated Silver Nanoparticles by the Green Method, Int. J. Mol. Sci., 13(6), 6639, 2012.
  • 45. BIN AHMAD M., TAY M.Y., SHAMELI K., HUSSEIN M.Z., LIM J.J. Green Synthesis and Characterization of Silver/Chitosan/Polyethylene Glycol Nanocomposites without any Reducing Agent, Int. J. Mol. Sci., 12 (8), 4872, 2011.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-f863f521-7e91-4080-9f43-c3087be46f34
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.