Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 10 | 4 |
Tytuł artykułu

Development and standardization of a rating scale designed for floorball skills diagnostics of young school-age children

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Background: The purpose of the study is to develop a standardized diagnostic tool designed to predict the level of the tested floorball skills in young school-age children that is necessary for future game performance. Material and methods: For the construction of the Guttman-type scale, the Rasch model was applied. The methodology employed the procedures for standardization by Stochl & Musalek, fit functions to determine the fit of the data model, KR-20 coefficient for the reliability calculation, Fleiss’ kappa coefficient to determine the inter-rater agreement, and PCA of residuals to determine the unidimensionality. Results: Only 9 items out of a total of 30 were selected and retained in the developed rating scale. However, the items covered the continuity of the diagnosed feature very well, and the standardization procedure has been successful – the Rasch model fit the data, three criteria of unidimensionality were met, the reliability value of the rating scale was 0.81 and the inter-rater agreement reached 98.5%. Conclusions: ‪The developed rating scale includes 9 items suited to assess ball handling, ball controlling and passing techniques. Unfortunately, items containing shooting were not selected; they were too difficult and misfit the Rasch model.
Słowa kluczowe
Twórcy
  • Faculty of Physical Education and Sport, Charles University in Prague, Praque, the Chech Republic
Bibliografia
  • [1] Peric T. Sportovni priprava deti [Sport preparation of children]. Prague: Grada; 2012. Czech.
  • [2] Kysel J. Florbal – kompletni pruvodce [Floorball – a complete guide]. Prague: CFbU; 2010. Czech.
  • [3] Martinkova Z. Florbal – prakticky pruvodce treninkem mladeze [Floorball – a practical guide to youth training]. Prague: CFbU; 2009. Czech.
  • [4] Skruzny Z. Florbal [Floorball]. Prague: Grada; 2005. Czech.
  • [5] Zlatnik D. Florbalovy trenink v praxi – herni cinnosti jednotlivce [Floorball training in practice – individual playing skills]. Prague: CFbU; 2004. Czech.
  • [6] Dovalil J. Vykon a trenink ve sportu [Performance and training in sport]. Prague: Olympia; 2012. Czech.
  • [7] Ali A. Measuring soccer skill performance: A review. Scand J Med Sci Sport. 2011;21(2):170-183. https://doi.org/10.1111/j.1600-0838.2010.01256.x
  • [8] Ilic I. Structures and differences of the cognitive abilities of top handball, volleyball, basketball and soccer players. Facta Universitatis: Physical Education and Sport. 2015;13(3):403-410.
  • [9] Kioumourtzoglou E, Derri V, Tzetzis G, Theodorakis Y. Cognitive, perceptual, and motor abilities in skilled basketball performance. Percept Motor Skill. 1998;86(3):771-786. https://doi.org/10.2466/pms.1998.86.3.771
  • [10] Huijgen BCH. Cognitive functions in elite and sub-elite youth soccer players aged 13 to 17 years. PloS One. 2015;10(12). https://doi.org/10.1371/journal.pone.0144580
  • [11] MacDonald LA, Minahan CL. Indices of cognitive function measured in rugby union players using a computer-based test battery. J Sport Sci. 2016; 34(17): 1669-1674. https://doi.org/10.1080/0264 0414.2015.1132003
  • [12] Baumgartner TA, Jackson AS, Mahar MT, Rowe AD. Measurement for evaluation in physical education and exercise science. Boston: McGraw Hill; 2003.
  • [13] Cepicka L. Modely teorie polozkovych odpovedi v diagnostice motoriky cloveka [Models of item response theory in human motor diagnostics]. Pilsen: Zapadoceska univerzita; 2002. Czech.
  • [14] Jansa P. Mnohorozmerove skalovani v telesne vychove a sportu [Multidimensional scaling in physical education and sport]. Teorie a praxe TV. 2012; 37(2). Czech.
  • [15] Knudson DV, Morrison CS. Qualitative analysis of human movement. Champaign: Human Kinetics; 2002.
  • [16] Mekota K, Blahus P. Motoricke testy v telesne vychove [Motor tests in physical education]. Prague: SPN; 1983. Czech.
  • [17] Mekota K, Cuberek R. Pohybove dovednosti, cinnosti, vykony [Movement skills, activities, performances]. Olomouc: Univerzita Palackeho; 2007. Czech.
  • [18] Morrow JR, Jackson AW, Disch JG, Mood DP. Measurement and evaluation in human performance. Champaign: Human Kinetics; 2005.
  • [19] Thomas JR, Nelson JK, Silverman SJ. Research methods in physical activity. Champaign: Human Kinetics; 2005.
  • [20] Andrich D. Rasch models for measurement. Newbury park: Sage Publications; 1988. https://doi. org/10.4135/9781412985598
  • [21] Brichacek V. Uvod do psychologickeho skalovani [Introduction to psychological scaling]. Bratislava: Psychodiagnosticke a didakticke testy; 1978. Czech.
  • [22] Cepicka L. Konstrukce perfektni skaly v diagnostice motorickych dovednosti [Construction of a perfect scale in the diagnosis of motor skills]. Ceska Kinantropologie. 2003;7(1):7-18. Czech.
  • [23] Cepicka L. Prispevek k unidimenzionalnimu skalovani motorickych predpokladu [Contribution to unidimensional scaling of motor assumptions]. Prague: FTVS UK; 2005. Czech.
  • [24] Blahus P. K systemovemu pojeti statistickych metod v metodologii empirickeho vyzkumu chovani [Systemic concept of statistical methods in the methodology of empirical research of behavior]. Prague: Karolinum; 1996. Czech.
  • [25] Hendl J. Prehled statistickych metod: analyza a metaanalyza dat [Overview of statistical methods: data analysis and meta-analysis]. Prague: Portal; 2009. Czech.
  • [26] Massof W. Understanding Rasch and item response theory models: Applications to the estimation and validation of interval latent trait measures from responses to rating scale questionnaires. Ophthal Epidemiol. 2011;18(1):1-19.
  • [27] Stochl J, Musalek M. A practical guide to pilot standardization of tests. Acta Universitatis Carolinae Kinanthropologicae. 2009; 45(2): 5-15.
  • [28] Lawshe CH. A quantitative approach to content validity. Personel Psychol. 1975;28:563-575. https://doi.org/10.1111/j.1744-6570.1975.tb01393.x
  • [29] Linacre JM. Winsteps® Rasch measurement computer program. Beaverton: Winsteps; 2017.
  • [30] McCreary LL. Using the Rasch Measurement Model in psychometric analysis of the family effectiveness measure. Nurs Res. 2013;62(3):149-159. https://doi.org/10.1097/NNR.0b013e31828eafe6
  • [31] Donovan NJ. Adding meaning to measurement: Initial Rasch analysis of the ASHA FACS Social Communication Subtest. Aphasiology. 2006;20:362-373. https://doi.org/10.1080/02687030500475184
  • [32] Wu TY. Rasch analysis of the general self-efficacy scale in workers with traumatic limb injuries. J Occup Rehabil. 2016;26:332-339. https://doi.org/10.1007/s10926-015-9617-y
  • [33] Smith EV. Detecting and evaluating the impact of multidimensionality using item fit statistics and principal component analysis of residuals. J Appl Measur. 2002;3:205-231.
  • [34] Basílio ML. Cross-cultural validity of the Brazilian version of the Abilhand questionnaire for chronic stroke individuals, based on Rasch analyses. J Rehabil Med. 2016;48:6-13. https://doi.org/10.2340/16501977-2044
  • [35] Cortina JM. What is coefficient alpha? An examination of theory and applications. J Appl Psychol. 1993;78(1):98-104. https://doi.org/10.1037/0021-9010.78.1.98
  • [36] Cronbach LJ. Coefficient alpha and the internal structure of tests. Psychometrika. 1951;16(3):297-334. https://doi.org/10.1007/BF02310555
  • [37] Tavakol M, Dennick R. Making sense of Cronbach’s alpha. International Journal of Medical Education. 2011; 2:53-55. https://doi.org/10.5116/ijme.4dfb.8dfd
  • [38] Fleiss JL. Measuring nominal scale agreement among many raters. Psychol Bull. 1971;76:378-82. https://doi.org/10.1037/h0031619
  • [39] Turner-Stokes L. The work-ability support scale: Evaluation of scoring accuracy and rater reliability. J Occup Rehabil. 2014; 24: 511-524. https://doi.org/10.1007/s10926-013-9486-1
  • [40] Welch V. Open access systematic reviews need to consider applicability to disadvantaged populations: inter-rater agreement for a health equity plausibility algorithm. Med Res Methodol. 2012;12:187. https://doi.org/10.1186/1471-2288-12-187
  • [41] Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159-74. https://doi.org/10.2307/2529310
  • [42] Randolph JJ. Online Kappa calculator computer software [Available at http://justus.randolph.name/kappa] [Accessed on 20 January, 2018].
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-f62a9c43-1c0e-4094-a874-06001d865350
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.