Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
Recent molecular evidence has shown that the largest genus of the family Hipposideridae, Hipposideros, is paraphyletic with respect to H. commersonii sensu lato and H. vittatus, both belonging to a species complex referred to as the commersonii group. The taxonomic issues at the generic level of certain species of Hipposideros remain unresolved in part related to insufficient material in previous molecular studies. Herein, we expand sampling of the commersonii group and include H. commersonii sensu stricto from its type locality, Madagascar. Our phylogenetic analysis revealed that the commersonii group forms a highly supported monophyletic clade with H. cyclops, which is sister taxa to Aselliscus and Coelops. A combination of phylogenetic and comparative morphological analyses, as well as divergence time estimates, were used to provide compelling evidence to support the placement of the clade containing the commersonii group and that with H. cyclops in two resurrected genera, Macronycteris and Doryrhina, respectively. Divergence time estimates indicated that Macronycteris and Doryrhina diverged 19 mya and separated from Coelops and Aselliscus in the Oligocene, about 31 mya. The commersonii group underwent a rapid radiation as recently as 3 mya likely in response to favourable climatic conditions during the Late Pliocene in Africa. Phylogenetic analysis of Cyt-b could not resolve relationships within this morphologically conserved complex. Further sampling is necessary to fully elucidate the evolutionary history of Doryrhina. Given that cryptic species are widespread among bats, including within the genus Hipposideros, this study highlights the shortcomings of current chiropteran taxonomy to describe hidden diversity.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
p.1-18,fig.,ref.
Twórcy
autor
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
autor
- Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL, USA
- Association Vahatra, BP 3972, Antananarivo 101, Madagascar
autor
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
autor
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
- Applied Zoology and Nature Conservation, Greifswald University, Greifswald, Germany
autor
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
Bibliografia
- 1. Andersen, K. 1905. On Hipposideros diadema and its closest allies. Annals and Magazine of Natural History, 7, 16: 497–507. Google Scholar
- 2. Andersen, K. 1906. On the bats of the Hipposideros armiger and Commersoni types. Annals and Magazine of Natural History, 7, 17: 35–48. Google Scholar
- 3. Andriollo, T., Y. Naciri, and M. Ruedi. 2015. Two mitochondrial barcodes for one biological species: the case of European Kuhl's pipistrelles (Chiroptera). PLoS ONE, 10: e034881. Google Scholar
- 4. Bates, P. J. J., and D. L. Harrison. 1997. Bats of the Indian Subcontinent. Harrison Zoological Museum, Sevenoaks, 258 pp. Google Scholar
- 5. Behrensmeyer, A. K., N. E. Todd, R. Potts, and G. E. Mcbrinn. 1997. Late Pliocene faunal turnover in the Turkana basin, Kenya and Ethiopia. Science, 278: 1589–1594. Google Scholar
- 6. Bickford, D., D. J. Lohman, N. S. Sodhi, P. K. Ng, R. Meier, K. Winker, K. K. Ingram, and I. Das. 2007. Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution, 22: 148–155. Google Scholar
- 7. Bogdanowicz, W., and R. D. Owen. 1998. In the Minotaur's labyrinth: phylogeny of the bat family Hipposideridae. Pp. 27–42, in Bat biology and conservation ( T. H. Kunz and P. A. Racey, eds.). Smithsonian Institution Press. Washington, D.C., 365 pp. Google Scholar
- 8. Castella, V., M. Ruedi, L. Excoffier, C. Ibañez, R. Arlettaz, and J. Hausser. 2000. Is the Gibraltar Strait a barrier to gene flow for the bat Myotis myotis (Chiroptera: Vespertilionidae)? Molecular Ecology, 9: 1761–1772. Google Scholar
- 9. Decher, J. and J. Fahr. 2005. Hipposideros cyclops. Mammalian Species, 763: 1–7. Google Scholar
- 10. Demenocal, P. B. 2004. African climate change and faunal evolution during the Pliocene-Pleistocene. Earth and Planetary Science Letters, 220: 3–24. Google Scholar
- 11. Dool, S. E., S. J. Puechmaille, N. M. Foley, B. Allegrini, A. Bastian, G. L. Mutumi, T. G. Maluleke, L. J. Odendaal, E. C. Teeling, and D. S. Jacobs. 2016. Nuclear introns outperform mitochondrial DNA in phylogenetic reconstruction: lessons from horseshoe bats (Rhinolophidae: Chiroptera). Molecular Phylogenetics and Evolution, 97: 196–122. Google Scholar
- 12. Drummond, A. J. and A. Rambaut. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7: 214. Google Scholar
- 13. Edgar, R. C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32: 1792–1797. Google Scholar
- 14. Esselstyn, J. A., B. J. Evans, J. L. Sedlock, F. A. A. Khan, and L. R. Heaney. 2012. Single-locus species delimitation: a test of the mixed Yule-coalescent model, with an empirical application to Philippine round-leaf bats. Proceedings of the Royal Society of London, 279B: 3678–3686. Google Scholar
- 15. Fahr, J. 2013. Hipposideros cyclops cyclops leaf-nosed bat. Pp. 380–383, in Mammals of Africa. Volume IV ( M. Happold and D. C. D. Happold, eds.). Bloomsbury Publishing, London, 800 pp. Google Scholar
- 16. Flannery, T. 1995a. Mammals of New Guinea. Cornell University Press, Ithaca, 568 pp. Google Scholar
- 17. Flannery, T. 1995b. Mammals of the south-west Pacific and Moluccan islands. Cornell University Press, Ithaca, 464 pp. Google Scholar
- 18. Foley, N. M., V. D. Thong, P. Soisook, S. M. Goodman, K. N. Armstrong, D. S. Jacobs, S. J. Puechmaille, and E. C. Teeling. 2015. How and why overcome the impediments to resolution: lessons from rhinolophid and hipposiderid bats. Molecular Biology and Evolution, 32: 313–333. Google Scholar
- 19. Francis, C. M. 2008. A guide to the mammals of southeast Asia. Princeton University Press, Princeton, 392 pp. Google Scholar
- 20. Furman, A., T. Postawa, T. Öztunc, and E. Coraman. 2010. Cryptic diversity of the bent-wing bat, Miniopterus schrei bersii (Chiroptera: Vespertilionidae), in Asia Minor. BMC Evolutionary Biology, 10: 121. Google Scholar
- 21. Gager, Y., E. Tarland, D. Lieckfeldt, M. Menage, F. Bote Ro-Castro, S. J. Rossiter, R. H. Kraus, A. Ludwig, and D. K.. Dechmann. 2016. The value of molecular vs. morphometric and acoustic information for species identification using sympatric mollosid bats. PLoS ONE, 11: e0150780. Google Scholar
- 22. Geoffroy Saint-Hilaire, E. 1813. Sur un genre de chauvesouris sous le nom de Rhinolophes. Annales du Museum d'Histoire Naturelle, 20: 254–266. Google Scholar
- 23. Goodman, S. M., S. J. Puechmaille, N. Friedli-Weyeneth, J. Gerlach, M. Ruedi, M. C. Schoeman, W. T. Stanley, and E. C. Teeling. 2012. Phylogeny of the Emballonurini (Emballo nuridae) with descriptions of a new genus and species from Madagascar. Journal of Mammalogy, 93: 1440–1455. Google Scholar
- 24. Goodman, S. M., M. C. Schoeman, A. R. Rakotoarivelo, and S. Willows-Munro. 2016. How many species of Hipposideros have occurred on Madagascar since the Late Pleis to cene? Zoological Journal of the Linnean Society, 177: 428–449. Google Scholar
- 25. Gray, J. 1866. A revision of the genera of Rhinolophidae, or horse shoe bats. Proceedings of the Zoological Society of London, 1866: 81–83. Google Scholar
- 26. Hand, S. J., and J. A. W. Kirsch. 1998. A southern origin for the Hipposideridae (Microchiroptera)? Evidence from the Australian fossil record. Pp. 72–90, in Bat biology and conservation ( T. H. Kunz and P. A. Racey, eds.). Smithsonian Institution Press, Washington, D.C., 365 pp. Google Scholar
- 27. Happold, M. 2013a. Hipposideros gigas giant leaf-nosed bat. Pp. 385–387, in Mammals of Africa. Volume IV ( M. Happold and D. C. D. Happold, eds.). Bloomsbury Publishing, London, 800 pp. Google Scholar
- 28. Happold, M. 2013b. Hipposideros vittatus striped leaf-nosed bat. Pp. 395–398, in Mammals of Africa. Volume IV ( M. Happold and D. C. D. Happold, eds.). Bloomsbury Publishing, London, 800 pp. Google Scholar
- 29. Happold, M. 2013c. Genus Hipposideros. Old World leaf-nosed bats. Pp. 367–371, in Mammals of Africa. Volume IV ( M. Happold and D. C. D. Happold, eds.). Bloomsbury Publishing, London, 800 pp. Google Scholar
- 30. Harada, M., M. Minezawa, S. Takada, S. Yenbutra, P. Nunpakdee, and S. Ohtani. 1982. Karyological analysis of 12 species of bats from Thailand. Caryologia, 35: 269–278. Google Scholar
- 31. Hill, J. E. 1963. A revision of the genus Hipposideros. Bulletin of the British Museum (Natural History), Zoology, 11: 1–129. Google Scholar
- 32. Hood, C. S., D. A. Schlitter, J. I. Georgudaki, S. Yenbutra, and R. J. Baker. 1988. Chromosomal studies of bats (Mammalia: Chiroptera) from Thailand. Annals of Carnegie Museum, 57: 99–109. Google Scholar
- 33. Jones, G. 1997. Acousticsignals and speciation: the roles of natural and sexual selection in the evolution of cryptic species. Advances in the Study of Behaviour, 26: 317–354. Google Scholar
- 34. Khan, F. A. A., S. Solari, V. J. Swier, P. A. Larsen, M. Abdullah, and R. J. Baker. 2010. Systematics of Malaysian wooly bats (Vespertilionidae: Kerivoula) inferred from mitochondrial, nuclear, karyotypic and morphological data. Journal of Mammology, 91: 1058–1072. Google Scholar
- 35. Koopman, K. F. 1994. Chiroptera: Systematics. Pp. 100–109, in Handbuch der Zoologie. Volume VII ( J. Niethammer, H. Schliemann, and D. Starck, eds.). Walter de Gruyter, Berlin, vii + 217 pp. Google Scholar
- 36. Koubínová, D., K. Sreepada, P. Koubek, and J. Zima. 2010. Karyotypic variation in rhinolophid and hipposiderid bats (Chiroptera: Rhinolophidae, Hipposideridae). Acta Chiropterologica, 12: 393–400. Google Scholar
- 37. Laurie, E. M. O., and J. E. Hill. 1954. List of land mammals of New Guinea, Celebes and adjacent islands, 1758–1952. Trustees of the British Museum, London, 175 pp. Google Scholar
- 38. Lavery, T. H., L. K. P. Leung, and J. M. Seddon. 2014. Molecular phylogeny of hipposiderid bats (Chiroptera: Hipposideridae) from Solomon Islands and Cape York Peninsula, Australia. Zoologica Scripta, 43: 429–442. Google Scholar
- 39. Legendre, S. 1982. Hipposideridae (Mammalia: Chiroptera) from the Mediterranean Middle and Late Neogene, and evolution of the genera Hipposideros and Asellia. Journal of Vertebrate Paleontology, 2: 372–385. Google Scholar
- 40. Li, G., B. Liang, Y. Wang, H. Zhao, K. M. Helgen, L. Lin, G. Jones, and S. Zhang. 2007. Echolocation calls, diet, and phylogenetic relationships of Stoliczka's trident bat, Aselliscus stoliczkanus (Hipposideridae). Journal of Mammalogy, 88: 736–744. Google Scholar
- 41. Mao, X., J. Wang, W. Su, Y. Wang, F. Yang, and W. Nie. 2010. Karyotypic evolution in family Hipposideridae (Chiroptera, Mammalia) revealed by comparative chromosome painting, G- and C-banding. Zoological Research, 31: 453–460. Google Scholar
- 42. Miller, G. S. 1907. The families and genera of bats. Bulletin United States National Museum, 57: 1–282. Google Scholar
- 43. Monadjem, A., P. J. Taylor, F. P. D. Coterill, and M. C. Schoeman. 2010. Bats of central and southern Africa: a biogeographic and taxonomic synthesis. Wits University Press, Johannesburg, 596 pp. Google Scholar
- 44. Monadjem, A., L. Richards, P. J. Taylor, C. Denys, A. Dower, and S. Stoffberg. 2013. Diversity of Hipposideridae in the Mount Nimba Massif, West Africa, and the taxonomic status of Hipposideros lamottei. Acta Chiropterologica, 15: 341–352. Google Scholar
- 45. Murray, S. W., P. Campbell, T. Kingston, A. Zubaid, C. M. Francis, and T. H. Kunz. 2012. Molecular phylogeny of hipposiderid bats from Southeast Asia and evidence of cryptic diversity. Molecular Phylogenetics and Evolution, 62: 597–611. Google Scholar
- 46. Nowak, R. M., and J. L. Paradiso. 1999. Walker's mammals of the world, 6th edition. Johns Hopkins University Press, Baltimore, 2015 pp. Google Scholar
- 47. Paradis, E., J. Claude, and K. Strimmer. 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics, 20: 289–290. Google Scholar
- 48. Payne, J., C. M. Francis, and K. Philipps. 1985. A field guide to the mammals of Borneo. The Sabah Society, Kota Kinabalu, 332 pp. Google Scholar
- 49. Peters, W. 1871. Über die Gattungen und Arten der Hufeisennase, Rhinolophi. Monatsberichte der Königlich Preussischen Akademie der Wissenschaften, 1871: 301–332. Google Scholar
- 50. Porter, C. A., A. W. Primus, F. G. Hoffman, and R. J. Baker. 2010. Karyology of five species of bats (Vespertilionidae, Hipposideridae, and Nycteridae) from Gabon with comments on the taxonomy of Glauconycteris. Occasional Papers of the Museum Texas Tech University, 295: 1–7. Google Scholar
- 51. Posada, D. 2008. jModelTest: phylogenetic model averaging. Molecular Biology and Evolution, 25: 1253–1256. Google Scholar
- 52. Puechmaille, S. J., M. Argouilh, P. Piyapan, M. Yokubol, K. M. Mie, P. J. Bates, C. Satasook, T. Nwe, S. S. H. Bu, and I. J. Mackie. 2011. The evolution of sensory divergence in the context of limited gene flow in the bumblebee bat. Nature Communications, 2: 573. Google Scholar
- 53. Puechmaille, S. J., I. M. Borissov, S. Zsebok, B. Allegrini, M. Hizem, S. Kuenzel, M. C. Schuchmann, E. C. Teeling and B. M. Siemers. 2014a. Female mate choice can drive the evolution of high frequency echolocation in bats: a case study with Rhinolophus mehelyi. PLoS ONE, 9: e103452. Google Scholar
- 54. Puechmaille, S. J., B. Allegrini, P. Benda, K. Gurun, J. Šramek, C. Ibañez, J. Juste, and R. Bilgin. 2014b. A new species of the Miniopterus schreibersii species complex (Chiroptera: Miniopteridae) from the Maghreb Region, North Africa. Zootaxa, 3794: 108–124. Google Scholar
- 55. Pye, J. D. 1972. Bimodal distribution of constant frequencies in some hipposiderid bats (Mammalia: Hipposideridae). Journal of Zoology (London), 166: 323–335. Google Scholar
- 56. R CORE TEAM. 2016. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at http://cran.r-project.org. Google Scholar
- 57. Rainho, A., C. F. J. Meyer, S. Thorsteinsdóttir, J. Justino, S. Samba, and J. M. Palmeirim. 2010. Distribuição, estatuto e conservação des morcegos de São Tomé. Centro de Biologia Ambiental, Universidad de Lisboa, Lisboa, 48 pp. Google Scholar
- 58. Rakotoarivelo, A. R., S. Willows-Munro, M. C. Schoeman, J. M. Lamb, and S. M. Goodman. 2015. Cryptic diversity in Hipposideros commersoni sensu stricto (Chiroptera: Hipposideridae) in the western portion of Madagascar. BMC Evolutionary Biology, 15: 1. Google Scholar
- 59. Ramasindrazana, B., S. M. Goodman, M. C. Schoeman, and B. Appleton. 2011. Identification of cryptic species of Miniopterus bats (Chiroptera: Miniopteridae) from Madagas car and the Comoros using bioacoustics overlaid on molecular genetic and morphological characters. Biological Jour nal of the Linnean Society, 104: 284–302. Google Scholar
- 60. Rambaut, A., and A. Drummond. 2007. Tracer v1. 4. Available from http://beast.bio.ed.ac.uk/Tracer. Google Scholar
- 61. Rautenbach, I., G. Bronner, and D. Schlitter. 1993. Karyotypic data and attendant systematic implications for the bats of southern Africa. Koedoe, 36: 87–104. Google Scholar
- 62. Richards, L. R., R. V. Rambau, S. M. Goodman, P. J. Taylor, M. C. Schoeman, F. Yang, and J. M. Lamb. 2016. Karyotypic evolution in Malagasy flying foxes (Pteropodidae, Chiroptera) and their hipposiderid relatives as determined by comparative chromosome painting. Cytogenetics and Genome Research, 148: 185–198. Google Scholar
- 63. Ronquist, F., M. Teslenko, P. Van Der Mark, D. L. Ayres, A. Darling, S. Hoehna, B. Larget, L. Liu, M. A. Suchard, and J. P. Huelsenbeck. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61: 539–542. Google Scholar
- 64. Rosevear, D. R. 1965. The bats of West Africa. Trustees of the British Museum (Natural History), London, 418 pp. Google Scholar
- 65. Ruedi, M., N. Friedli-Weyeneth, E. C. Teeling, S. J. Puechmaille, and S. M. Goodman. 2012. Biogeography of Old World emballonurine bats (Chiroptera: Emballonuridae) inferred with mitochondrial and nuclear DNA. Molecular Phylogenetics and Evolution, 64: 204–211. Google Scholar
- 66. Schuchmann, M., S. J. Puechmaille, and B. M. Siemers. 2012. Horseshoe bats recognise the sex of conspecifics from their echolocation calls. Acta Chiropterologica, 14: 161–166. Google Scholar
- 67. Sige, B. 1968. Les chiroptères du Miocène inférieur de Bouzigues. I. Etude systématique. Paleovertebrata, 1: 65–133. Google Scholar
- 68. Silvestro, D., and I. Michalak. 2012. raxmlGUI: a graphical front-end for RAxML. Organisms Diversity & Evolution, 12: 335–337. Google Scholar
- 69. Simmons, N. B. 2005. Order Chiroptera. Pp. 312–529 in Mammal species of the world: a taxonomic and geographic reference ( D. E. Wilson and D. M. Reeder, eds.). Smithsonian Institution Press, Washington, D.C., 2142 pp. Google Scholar
- 70. Smith, M. F., and J. L. Patton. 1993. The diversification of South American murid rodents: evidence from mitochondrial DNA sequence data for the akodontine tribe. Biological Journal of the Linnean Society, 50: 149–177. Google Scholar
- 71. Stamatakis, A. 2006. RAxML-VI-HPC: maximum likelihoodbased phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22: 2688–2690. Google Scholar
- 72. Strahan, R. 1995. Mammals of Australia. Smithsonian Institution Press, Washington, D.C., 756 pp. Google Scholar
- 73. Tate, G. H. H. 1941. Results of the Archbold Expeditions No. 35. A review of the genus Hipposideros with special reference to Indo-Australian species. Bulletin of the American Museum of Natural History, 73: 353–393. Google Scholar
- 74. Taylor, P. J., S. Stoffberg, A. Monadjem, M. C. Schoeman, J. Bayliss, and F. P. Cotterill. 2012. Four new bat species (Rhinolophus hildebrandtii complex) reflect Plio-Pleistocene divergence of dwarfs and giants across an Afromontane archipelago. PLoS ONE, 7: e41744. Google Scholar
- 75. Thabah, A., S. J. Rossiter, T. Kingston, S. Zhang, S. Parsons, K. M. Mya, Z. Akbar, and G. Jones. 2006. Genetic divergence and echolocation call frequency in cryptic species of Hipposideros larvatus s.l. (Chiroptera: Hipposideridae) from the Indo-Malayan region. Biological Journal of the Linnean Society, 88: 119–130. Google Scholar
- 76. Thong, V. D., S. J. Puechmaille, A. Denzinger, P. J. Bates, C. Dietz, G. Csorba, P. Soisook, E. C. Teeling, S. Matsumura, and N. M. Furey. 2012a. Systematics of the Hipposideros turpis complex and a description of a new subspecies from Vietnam. Mammal Review, 42: 166–192. Google Scholar
- 77. Thong, V. D., S. J. Puechmaille, A. Denzinger, C. Dietz, G. Csorba, P. J. Bates, E. C. Teeling, and H.-U. Schnitzler. 2012b. A new species of Hipposideros (Chiroptera: Hipposideridae) from Vietnam. Journal of Mammalogy, 93: 1–11. Google Scholar
- 78. Thong, V. D., C. Dietz, A. Denzinger, P. J. J. Bates, S. J. Puechmaille, C. Callou, and H.-U. Schnitzler. 2012c. Resolving a mammal mystery: the identity of Paracoelops megalotis (Chiroptera: Hipposideridae). Zootaxa, 3505: 75–85. Google Scholar
- 79. Tsang, S. M., A. L. Cirranello, P. J. Bates, and N. B. Simmons. 2016. The roles of taxonomy and systematics in bat conservation. Pp. 503–538, in Bats in the Anthropocene: conservation of bats in a changing world. Springer, Heidel berg, 606 pp. Google Scholar
- 80. Vallo, P., A. Guillén-Servent, P. Benda, D. B. Pires, and P. Koubek. 2008. Variation of mitochondrial DNA in the Hipposideros caffer complex (Chiroptera: Hipposideridae) and its taxonomic implications. Acta Chiropterologica, 10: 193–206. Google Scholar
- 81. Wang, H., B. Liang, J. Feng, L. Sheng, and S. Zhang. 2003. Molecular phylogenetic of hipposiderids (Chiroptera: Hipposideridae) and rhinolophids (Chiroptera: Rhinolophidae) in China based on mitochondrial cytochrome b sequences. Folia Zoologica, 52: 259–268. Google Scholar
- 82. Yang, Z. 2007. PAML 4: phylogenetic analysis by maximum like lihood. Molecular Biology and Evolution, 24: 1586–1591. Google Scholar
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-f3ffb6ca-d1be-4619-b6c7-29340ee80dd0