Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 34 | 4 |
Tytuł artykułu

Pathogen-induced changes in malate content and NADP-dependent malic enzyme activity in C3 or CAM performing Mesembryanthemum cristallium L. plants

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Changes in malate concentration and activity of NADP-dependent malic enzyme were observed as the effect of Botrytis cinerea infection of C₃ or CAM-performing Mesembryanthemum crystallinum plants. Biotic stress applied on C₃ plants led to increase in malate concentration during the night and in consequence it led to increase in Δ-malate (day/night fluctuations) in infected leaves on the 2nd day post infection (dpi). It corresponded with induction of additional isoform of NADP-malic enzyme (NADP-ME3). On the contrary, CAM-performing M. crystallinum plants exhibited decrease in malate concentration and decay in its diurnal fluctuations as a reaction to B. cinerea infection. This correlated with significant decrease in activities of NADP-malic enzyme isoforms on the 2nd dpi as well as no fluctuations in their activities on the 9th dpi. Presented results point out to differences between C₃ and CAM plants in the direction of changes in primary metabolism providing energy, reducing equivalents and carbon skeletons for defense responses to halt the pathogen growth.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
34
Numer
4
Opis fizyczny
p.1471-1477,fig.,ref.
Twórcy
  • Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Krakow, Poland
autor
  • Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Krakow, Poland
autor
  • Institute of Biology, Pedagogical University, Podbrzezie 3, 31-054 Krakow, Poland
autor
  • Institute of Biology, Pedagogical University, Podbrzezie 3, 31-054 Krakow, Poland
autor
  • Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Krakow, Poland
Bibliografia
  • Asselbergh B, Curvers K, Franca SC, Audenaert K, Vuylsteke M, Van Breusegem F, Höfte M (2007) Resistance to Botrytis cinerea in sitiens, an abscisic acid-deficient tomato mutant, involves timely production of hydrogen peroxide and cell wall modifications in the epidermis. Plant Physiol 144:1863–1877
  • Baker CJ, Orlandi EW (1995) Active oxygen in plant pathogenesis. Annu Rev Phytopathol 33:299–321
  • Bohnert HJ, Cushman J (2000) The ice plant cometh: lesson in abiotic stress tolerance. J Plant Growth Reg 19:334–346
  • Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of proteindye-binding. Anal Biochem 72:248–254
  • Casati P, Drincovich MF, Edwards GE, Andre CS (1999) Malate metabolism by NADP-malic enzyme in plant defense. Photosynth Res 61:99–105
  • Cheffings CM, Pantoja O, Ashcroft FM, Smith JAC (1997) Malate transport and vacuolar ion channels in CAM plants. J Exp Bot 48(Special Issue): 623–631
  • Chi W, Jianghua Y, Naihu W, Hang Z (2004) Four rice genes encoding NADP malic enzyme exhibit distinct expression profiles. Biosci Biotechnol Biochem 68:1865–1874
  • Cushman J (1992) Characterization and expression of a NADP-malic enzyme cDNA induced by salt stress from the facultative crassulacean acid metabolism plant, Mesembryanthemum crystallinum. Eur J Biochem 208:259–266
  • Drincovich MF, Casati P, Andreo CS (2001) NADP-malic enzyme from plants: a ubiquitous enzyme involved in different metabolic pathways. FEBS Lett 490:1–6
  • Fernie AR, Martinoia E (2009) Malate. Jack of all trades or master of a few? Phytochemistry 70:828–832
  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875
  • Gerrard Wheeler MC, Tronconi MA, Drincovich MF, Andreo CS, Flügge UI, Maurino VG (2005) A comprehensive analysis of the NADP-malic enzyme gene family of Arabidopsis. Plant Physiol 139:39–51
  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930
  • Hurst AC, Grams TE, Ratajczak R (2004) Effects of salinity, high irradiance, ozone, and ethylene on mode of photosynthesis, oxidative stress and oxidative damage in the C₃/CAM intermediate plant Mesembryanthemum crystallinum L. Plant Cell Environ 27:187–197
  • Kuźniak E, Kornaś A, Gabara B, Ullrich C, Skłodowska M, Miszalski Z (2010) Interaction of Botrytis cinerea with the intermediate C₃-CAM plant Mesembryanthemum crystallinum. Environ Exp Bot 69:137–147
  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 15:680–685
  • Lance C, Rustin P (1984) The central role of malate in plant metabolism. Physiol Veg 22:625–641
  • Libik M, Pater B, Elliot S, Ślesak I, Miszalski Z (2004) Malate accumulation in different organs of Mesembryanthemum crystallinum L. following age-dependent or salinity-triggered CAM metabolism. Z Naturforsch C 59(3–4):223–228
  • Libik-Konieczny M, Surówka E, Kuźniak E, Nosek M, Miszalski Z (2011) Effects of Botrytis cinerea and Pseudomonas syringae infection on the antioxidant profile of Mesembryanthemum crystallinum C₃/CAM intermediate plant. J Plant Physiol. doi:10.1016/j.jplph.2010.12.015
  • Liu S, Cheng Y, Zhang X, Guang Q, Nishiuchi S, Hase K, Takano T (2007) Expression of an NADP-malic enzyme gene in rice (Oryza sativa L.) is induced by environmental stresses; overexpression of that gene in Arabidopsis confers salt and osmotic stress tolerance. Plant Mol Biol 64:49–58
  • Martinoia E, Rentsch D (1994) Malate compartmentation—responses to a complex metabolism. Annu Rev Plant Physiol Mol Biol 45:447–467
  • Maurino VG, Saigo M, Andreo CS, Drincovich MF (2001) Nonphotosynthetic ‘‘malic enzyme’’ from maize: a constitutively expressed enzyme that respond to plant defense inducers. Plant Mol Biol 45:409–420
  • Miszalski Z, Slesak I, Niewiadomska E, Baczek-Kwinta R, Lüttge U, Ratajczak R (1998) Subcellular localization and stress responses of superoxide dismutase isoforms from leaves in the C3-CAM intermediate halophyte Mesembryanthemum crystallinum L. Plant Cell Environ 21:169–179
  • Möllering H (1974) L-(-)-Malate: determination with Malate dehydrogenase and glutamate-oxaloacetate transaminase, In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol 3. Academic Press, London, pp 1589–1593
  • Ryšlava H, Muller K, Semoradova Š, Synkova H, Čeřovska N (2003) Photosynthesis and activity of phosphoenolpyruvate carboxylase in Nicotiana tabacum L. leaves infected by Potato virus A and Potato virus Y. Photosynthetica 41:357–363
  • Saigo M, Bologna F, Maurino VG, Detarsio E, Andreo CS, Drincovich MF (2004) Maize recombinant non-C₄ NADP-malic enzyme: a novel dimeric malic enzyme with high specific activity. Plant Mol Biol 55:97–107
  • Saitou K, Agata W, Asakura M, Kubota F (1994) Isoforms of NADPmalic enzyme from Mesembryanthemum crystallinum L. that are involved in C₃ photosynthesis and crassulacean acid metabolism. Plant Cell Physiol 35:1165–1171
  • Schaaf J, Walter MH, Hess D (1995) Primary metabolism in plant defense. Regulation of a bean malic enzyme gene promoter in transgenic tobacco by developmental and environmental cues. Plant Physiol 108:949–960
  • Schwachtje J, Baldwin IT (2008) Why does herbivore attack reconfigure primary metabolism? Plant Physiol 146:845–851
  • Smeets K, Cuypers A, Lambrechts A, Semane B, Hoet P, Van Laere A, Vangronsveld J (2005) Induction of oxidative stress and antioxidative mechanisms in Phaseolus vulgaris after Cd application. Plant Physiol Biochem 43:437–444
  • Taybi T, Cushman JC, Borland AM (2002) Environmental, hormonal and circadian regulation of crassulacean acid metabolism expression. Func Plant Biol 29:669–678
  • Williamson B, Tudzynski B, Tudzynski PJ, van Kan AL (2007) Pathogen profile—Botrytis cinerea: the cause of grey mould disease. Mol Plant Pathol 8:561–580
  • Winter K, Holtum JAM (2007) Environment or Development? Lifetime net CO₂ exchange and control of the expression of crassulacean acid metabolism in Mesembryanthemum crystallinum. Plant Physiol 143:98–107
Uwagi
Rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-f30531ae-734d-4409-ab06-5c7eb37b9a5a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.