Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 25 | Special Issue S3 |
Tytuł artykułu

The influence of finite element meshing accuracy on a welding machine for offshore platform's modal analysis

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose objective of this study was to investigate the inf luence of finite element meshing accuracy on modal analysis which is one of the basic factors affecting the accuracy of finite element analysis and mostly preoccupies the working staff in pre-processing finite element simulation models. In this paper, we established several finite element models of a welding machine for offshore platform, with the meshing accuracy as the variable and workbench software as the platform for modal analysis, as the same time, comparing the analysis results. The results indicated that for some specific structures and simulation types, mesh refinement alone does not achieve desired results, and the authors indicate that mesh refinement is rarely related to the equipment’s low-frequency modal analysis but it’s great related to the equipment’s high-frequency modal analysis. The findings of this study may serve as breaking the opinion that smaller mesh size means higher calculation precision and provides references for mesh division practices in low frequency modal analysis
Słowa kluczowe
Wydawca
-
Rocznik
Tom
25
Opis fizyczny
p.147-153,fig.,ref.
Twórcy
autor
  • School of Mechanical Engineering, Tianjin Sino-German University of Applied Sciences, Tianjin, China
autor
  • National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, Qinhuangdao 066004, China
autor
  • School of Mechanical Engineering, Tianjin Sino-German University of Applied Sciences, Tianjin, China
autor
  • School of Mechanical Engineering, Tianjin Sino-German University of Applied Sciences, Tianjin, China
Bibliografia
  • 1. N. Larbi, and J. Lardies, Experimental modal analysis of a structure excited by a random force, Mechanical Systems & Signal Processing, Vol. 14, No. 2, pp. 181–192, 2000.
  • 2. K. Yang, and T. Han, The application of Ansys in modal analysis, Journal of Jiamusi University (Natural Science Edition), Vol. 23, No. 1, pp. 81–84, 2005.
  • 3. Y. N. Lv, Z. H. Lv, B. Zhao, and C. Wang, A finite element analysis and topology optimization method for structures with free damping, Chinese Journal of Computational Mechanics, Vol. 29, No. 2, pp. 178–183, 2012.
  • 4. L. G. Cai, S. M. Ma, Y. S. Zhao, Z. F. Liu, and W.T. Yang, Finite element modeling and modal analysis of heavy-duty mechanical spindle under multiple constraints, Journal of Mechanical engineering, Vol. 48, No. 3, pp. 165–167, 2012.
  • 5. X. Cui, L. Gao, and J. X. Liu, Wind tunnel test study on the influence of railing ventilation rate on the vortex vibration characteristics of the main beam, International Journal of Heat and Technology, Vol. 36, No. 1, pp. 65–71, 2018.
  • 6. J. Huang, Z. Ji, H. M. Duan, and S. R. Qin, Experimental modal analysis of mechanical structure and typical applications,China Measurement & Test, Vol. 36, No. 2, pp. 4–8, 2010.
  • 7. Y. Dai, S. M. Cui, and L.W. Song, Finite element method modal analysis of driving motor for electric vehicle, Proceedings of the Chinese Society for Electrical Engineering, Vol. 31, No. 9, pp. 100–104, 2011.
  • 8. Y. Y. Cao, and D. F. Zhao, Finite element modal analysis theory and application, Mechanical Engineering & Automation, Vol. 140, No. 1, pp. 73–74, 2007.
  • 9. W. G. Zheng, Z. J. Liu, and N. Yang, Analysis on modal and static of steering pump bracket, Machinery Design & Manufacture, No. 6, pp. 182–184, 2014.
  • 10. E. W. Zhang, Y. S. Sun, and X. H. Zhou, Example analysis in date conversion between UG and Ansys, Mechanical Manufacturing & Automation, Vol. 36, No. 2, pp. 90–91, 2007.
  • 11. I. G. Jang, and B. M. Kawk, Evolutionary topology optimization using design space adjustment base on fixed grid, International Journal for Numerical Methods in Engineering, Vol. 66. No. 11, pp. 1817–1840, 2006.
  • 12. A. O. Cifuentes, and A. Kalbag, A performance study of tetrahedral and hexahedral elements in 3-D finite element structural analysis, Finite Element in Analysis and Design, Vol. 12, No. 3, pp. 313–318, 1992.
  • 13. B. Y. Shih, and H. Sakurai, Automated hexahedral mesh generation by swept volume decomposition and recomposition,”International Meshing Roundtable, pp. 273–280, 1996.
  • 14. H. C. Lu, I. Song, W. R. Quadros, and K. Shinmada, Geometric reasoning in sketch-based volumetric decomposition framework for hexahedral meshing, Engineering with Computers, Vol. 30, No. 2, pp. 237–252, 2013.
  • 15. C. F. Ning, Z. D. Fang, F. Wang, and X. Wang, Several Entity Element in the Comparison of Aviation Gear Box Calculation,Journal of Mechanical Strength, Vol. 4, No. 37, pp. 742–747, 2015.
  • 16. V. N. Nikishin, A. P. Pavlenko, K. N. Svetlichnyi, and V. S. Makov, Analysis of torsional crankshaft oscillations in a diesel engine on the basis of cylinder-block vibration, Russian Engineering Research, Vol. 33, No. 12, pp. 687–691, 2010.
  • 17. P. Han, J. J. Wang, and Z. R. Wang, Elasto-plastic response spectrum analysis in the seismic design of viaducts, Journal of Harbin Engineering University, Vol. 34, No. 4, pp. 461–470, 2013.
  • 18. M. L. Aenlle, P. F. Fernandez, R. Brincker, and A. F. Cantel, Scaling-factor estimation using an optimized mass-change strategy, Mechanical Systems & Signal Processing, Vol. 24, No. 5, pp. 1260–1273, 2010.
  • 19. Y. Saad, Analysis of subspace iteration for eigenvalue problems with evolving matrices, Siam Journal on Matrix Analysis & Application, Vol. 37, No. 1, pp. 103–122, 2016.
  • 20. A. H. Bentbib, M. E. Guide, and K. Kbilon. The bolck Lanczos algorithm for linear ill-posed problem, scalcolo, pp. 1–22, 2016.
  • 21. S. Kasim, N. A. Omar, N. S. Mohammad Akbar, R. Hassan, and M. A. Jabar, Comparison Semantic Similarity Approach Using Biomedical Domain Dataset, Acta Electronica Malaysia, Vol. 1, No. 2, pp. 1–4, 2017.
  • 22. S. C. Sen, S. Kasim, M. F. Md Fudzee, R. Abdullah, and R. Atan, Random Walk from Different Perspective, Acta Electronica Malaysia, Vol. 1, No. 2, pp. 26–27, 2017.
  • 23. S. Sathishkumar, and M. Kannan, Design and Fatigue Analysis of Multi Cylinder Engine and Its Structural Components, Acta Mechanica Malaysia, Vol. 2, No. 2, pp. 10–14, 2018.
  • 24. A. Abugalia, M. Shaglouf, Analysis of Different Models of Moa Surge Arrester for The Transformer Protection, Acta Mechanica Malaysia, Vol. 2, No. 2, pp. 19–21, 2018.
  • 25. X. G. Yue, and M. A. Ashraf, Opposite Degree Computation and Its Application, Engineering Heritage Journal, Vol. 2, No. 1, pp. 05–13, 2018.
  • 26. M. Elmnifi, M. Alshelmany, M. Alhammaly, and O. Imrayed, Energy Recovery from Municipal Solid Waste Incinerati on Benghazi – Case Study, Engineering Heritage Journal, Vol. 2, No. 1, pp. 19–23, 2018.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-f2fce16e-9cca-42a2-b6a5-672ab7b7d2ee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.